
example of hydroamination of electron-rich alkynes by using a silver-based catalyst that enables *syn*-selective addition of secondary amides and carbamates to furnish the corresponding silyl ketene aminals with high efficiency and excellent diastereoselectivity. Our mechanistic studies demonstrate that the reaction proceeds by a fast and reversible silveralkyne complexation, followed by a rate-determining C–N bond-forming step, which provides an important mechanistic platform for further development of d¹⁰ catalysts for alkyne and alkene hydroamination.

During our continuing investigation of the development of new catalytic C–C and C–X bond-forming reactions with electron-rich alkynes,^[6] we discovered that treatment of siloxy alkyne **1** (TIPS = iPr₃Si) with carbamate **2** in the presence of either a silver- or a gold-based catalyst resulted in the formation of silyl ketene aminal **3** (Table 1). Initial inves-

Table 1: Hydroamination of siloxy alkynes: catalyst evaluation.

[a] Determined by NMR integration with respect to an internal standard.

[b] Yield of isolated product (reaction giving best yield highlighted in

tigations revealed that the use of AgNTf₂ (Tf = CF₃SO₂)

bold). [c] The reaction was conducted in toluene at 80 °C.

Hydroamination

DOI: 10.1002/anie.200601276

Silver-Catalyzed Hydroamination of Siloxy Alkynes**

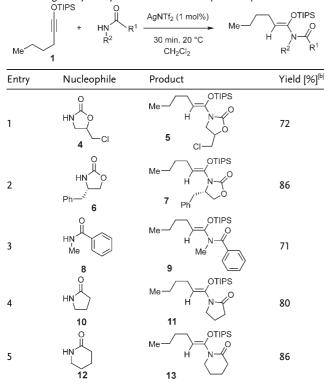
Jianwei Sun and Sergey A. Kozmin*

Transition-metal-catalyzed hydroamination of alkynes has emerged as a valuable method for C–N bond formation.^[1] While significant progress in this area has been made,^[2] several important limitations remain to be addressed. The majority of the previously developed catalytic processes employ highly nucleophilic primary amines that afford the corresponding imines as a result of tautomerization of the initially produced enamides.^[3–5] We describe herein the first

[*] J. Sun, Prof. Dr. S. A. Kozmin
Department of Chemistry
University of Chicago
5735 South Ellis Avenue, Chicago, IL 60637 (USA)
Fax: (+1) 773-702-0805
E-mail: skozmin@uchicago.edu
-

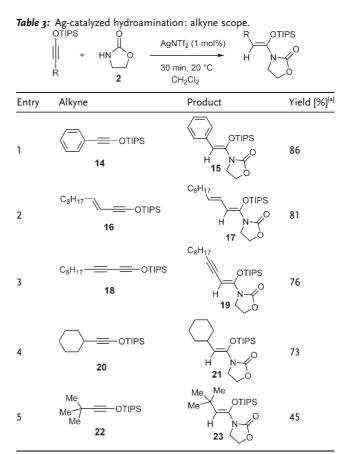
^[**] This work was supported by the NSF CAREER (CHE-0447751). S.A.K. thanks the Sloan Foundation, the Dreyfus Foundation, Amgen, and GlaxoSmithKline for additional funding.

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim


proved to be superior to that of AuCl and AuCl₃ (Table 1, entries 1–3).^[7] This finding is especially noteworthy as silverbased catalysts have not been used extensively for the hydroamination of alkynes and alkenes.^[8] The hydroamination product, **3**, was obtained in 86% yield after 30 min at room temperature by using only 1 mol% of AgNTf₂ (Table 1, entry 4). The catalyst loading could be further decreased to 0.3 mol% without significant loss of efficiency (Table 1, entry 5). Furthermore, subjecting the reactants to HNTf₂ (5 mol%) produced only a trace of enol silane **3**, which ruled out a possible involvement of the conjugate Brønsted acid in the alkyne activation (Table 1, entry 6). Interestingly, PdCl₂ and PtCl₂ proved to be much less effective at catalyzing this reaction (Table 1, entries 7 and 8).

Having established a standard reaction protocol, we examined the scope of this catalytic process. The reaction of either 5- or 4-substituted oxazolidinones, 4 and 6, with siloxy alkyne 1 afforded the desired products, 5 and 7, respectively (Table 2, entries 1 and 2). Hydroamination of 1 with secondary amide 8 afforded silyl ketene aminal 9 with good efficiency (Table 2, entry 3), thus demonstrating that the

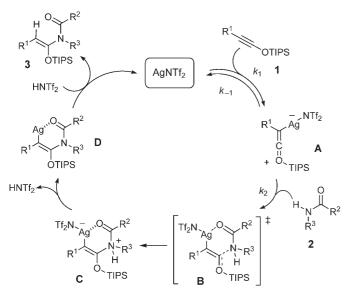
Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.



[a] General reaction protocol: siloxy alkyne (0.40 mmol) and amide (0.36 mmol) were dissolved in CH_2Cl_2 (5 mL) and treated with AgNTf₂ (0.0036 mmol) at 20 °C. The resulting solution was stirred for 30 min, then treated with one drop of Et₃N. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica gel. [b] Yield of isolated spectroscopically pure products that were fully characterized by NMR and IR spectroscopies and mass spectrometry.

reaction is not limited to the use of cyclic carbamates. Furthermore, lactams **10** and **12** were used to produce the corresponding enol silanes, **11** and **13** (Table 2, entries 4 and 5), thus illustrating the ability of this method to produce silyl ketene aminals that would not be available by using conventional silylation methods due to the problems associated with chemoselective generation of the required enols or enolates.

We next examined the scope of siloxy alkyne substitution (Table 3). Subjecting arene- or alkene-conjugated alkynes, 14 and 16, to the standard reaction conditions with carbamate 2 afforded the corresponding ketene aminals, 15 and 17, respectively (Table 3, entries 1 and 2). Hydroamination of diyne 18 proceeded to give enyne 19 with complete chemoand diastereoselectivity (Table 3, entry 3). Other alkyl-substituted alkynes, 20 and 22, gave the expected hydroamination products, 21 and 23 (Table 3, entry 5 of Table 3 is attributed to the significant increase in the steric bulk in direct proximity to the reaction site. While the current protocol is highly effective for hydroamination of a wide range of siloxy alkynes, ynamides and simple internal alkynes proved to be unreactive under its conditions.


To gain further insight into the mechanism of the Agcatalyzed hydroamination and the nature of the observed

[a] Refers to yields of isolated spectroscopically pure products that were fully characterized by NMR and IR spectroscopies and mass spectrometry.

high syn selectivity, we carried out a series of kinetic studies of the reaction of alkyne **1** with carbamate **2** in the presence of AgNTf₂ at -20 °C. We found that the reaction was first-order with respect to both carbamate **2** and the silver catalyst, and zero-order with respect to alkyne **1**, thus providing the empirical rate law: $r = k_{obs}$ [AgNTf₂][**2**], in which $k_{obs} = 1.52 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$.^[9] Furthermore, using deuterated oxazolidinone **2**, we found no primary deuterium isotope effect ($k_{H}/k_{D} = 1.03$).

We propose that the reaction begins with a fast and reversible complexation between 1 and AgNTf₂ to give silveralkyne complex A (Scheme 1), which is supported by our previous stoichiometric studies.^[6b] At high concentrations of alkyne, the catalyst is saturated with the alkyne and the equilibrium favors intermediate A, which explains why the reaction is zero-order with respect to the alkyne. The alkyne activation is followed by the rate-determining step, which entails the addition of the carbamate 2 to the silver-alkyne complex A. We believe that this reaction proceeds via a sixmembered chelated transition state, B, which explains the high syn selectivity of the hydroamination process.^[10] Subsequent release of the proton from intermediate C, followed by protodemetallation of the alkenyl-silver compound D affords the observed product, 3, and regenerates the silver catalyst. The proposed rate-determining step is fully consistent with the absence of any primary deuterium isotope effect.

Scheme 1. Proposed catalytic cycle for the silver-catalyzed hydroamination of siloxy alkynes.

In summary, our study demonstrates for the first time the ability of a silver-based catalyst to promote a *syn*-selective hydroamination of electron-rich alkynes with either secondary amides or carbamates. This process represents an efficient method for the synthesis of a range of synthetically useful silyl ketene aminals and provides an important mechanistic platform for further development of hydroamination reactions with late-transition-metal catalysts.^[11]

Received: March 31, 2006 Published online: June 29, 2006

Keywords: alkynes · homogeneous catalysis · hydroamination · silver

- For selected reviews, see: a) T. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675-703; b) M. Nobis, B. Drießen-Hölscher, Angew. Chem. 2001, 113, 4105-4108; Angew. Chem. Int. Ed. 2001, 40, 3983-3985; c) F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104-114; d) M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116, 3448-3479; Angew. Chem. Int. Ed. 2004, 43, 3368-3398; e) F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079-3159.
- [2] For representative examples, see: a) W. Reppe, Justus Liebigs Ann. Chem. 1956, 601, 81-138; b) M. Kimura, S. Kure, Z. Yoshida, S. Tanaka, K. Fugami, Y. Tamaru, Tetrahedron Lett. 1990, 31, 4887-4890; c) P. L. McGrane, T. Livinghouse, J. Am. Chem. Soc. 1992, 114, 1323-1324; d) P. J. Walsh, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1992, 114, 1708-1719; e) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 9295-9306; f) E. M. Campi, W. R. Jackson, J. Organomet. Chem. 1996, 523, 205-209; g) A. Haskel, T. Straub, M. S. Eisen, Organometallics 1996, 15, 3773-3775; h) T. E. Müller, Tetrahedron Lett. 1998, 39, 5961-5962; i) E. Haak, I. Bytschkov, S. Doye, Angew. Chem. 1999, 111, 3584-3586; Angew. Chem. Int. Ed. 1999, 38, 3389-3391; j) M. Tokunaga, M. Eckert, Y. Wakatsuki, Angew. Chem. 1999, 111, 3416-3419; Angew. Chem. Int. Ed. 1999, 38, 3222-3225; k) T. E. Müller, M. Grosche, E. Herdtweck, A.-P. Pleier, E. Walter, Y.-K. Yan, Organometallics 2000, 19, 170-183; l) C. G.

Hartung, A. Tillack, H. Trauthwein, M. Beller, J. Org. Chem.
2001, 66, 6339-6343; m) A. Tillack, I. G. Castro, C. G. Hartung,
M. Beller, Angew. Chem. 2002, 114, 2646-2648; Angew. Chem.
Int. Ed. 2002, 41, 2541-2544; n) T. Shimada, Y. Yamamoto, J.
Am. Chem. Soc. 2002, 124, 12670-12671; o) T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 6646-6647; p) L. L.
Anderson, J. Arnold, R. G. Bergman, Org. Lett. 2004, 6, 2519-2522; q) T. Shimada, G. B. Bajracharya, Y. Yamamoto, Eur. J.
Org. Chem. 2005, 59-62; r) L. D. Field, B. A. Messerle, K. Q.
Vuong, P. Turner, Organometallics 2005, 24, 4241-4250; s) A.
Zulys, M. Dochnahl, D. Hollmann, K. Lohnwitz, J.-S. Herrmann,
P. W. Roesky, S. Blechert, Angew. Chem. 2005, 117, 7971-7976;
Angew. Chem. Int. Ed. 2005, 44, 7794-7798; t) L. J. Gooßen,
J. E. Rauhaus, G. Deng, Angew. Chem. 2005, 117, 4110-4113;
Angew. Chem. Int. Ed. 2005, 44, 4042-4045.

- [3] For examples of intermolecular alkyne hydroamination with amides, see: T. Kondo, A. Tanaka, S. Kotachi, Y. Watanabe, J. Chem. Soc. Chem. Commun. 1995, 413–414.
- [4] For use of secondary amines, see: a) Y. Uchimaru, *Chem. Commun.* 1999, 1133–1134; b) J. Barluenga, F. Aznar, R. Liz, R. Rodes, *J. Chem. Soc. Perkin Trans.* 1 1980, 2732–2737; c) J. Barluenga, F. Aznar, *Synthesis* 1977, 195–197.
- [5] For Pd-catalyzed oxidative alkene amination with cyclic carbamates, see: V. I. Timokhin, S. S. Stahl, J. Am. Chem. Soc. 2005, 127, 17888–17893.
- [6] a) M. P. Schramm, D. S. Reddy, S. A. Kozmin, Angew. Chem.
 2004, 116, 4404-4407; Angew. Chem. Int. Ed. 2001, 40, 4274-4277; b) R. F. Sweis, M. P. Schramm, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 7442-7443; c) D. S. Reddy, S. A. Kozmin, J. Org. Chem. 2004, 69, 4860-4862; d) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 10204-10205; e) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 11204-10205; e) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 10204-10205; e) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 11806-11807; f) J. Sun, S. A. Kozmin, J. Am. Chem. Soc. 2005, 127, 13512-13513.
- [7] For examples of Au-catalyzed hydroamination of alkynes, alkenes, and dienes, see: a) Y. Fukuda, K. Utimoto, *Synthesis* **1991**, 975–978; b) A. Arcadi, S. Di Giuseppe, F. Marinelli, E. Rossi, *Adv. Synth. Catal.* **2001**, *343*, 443–446; c) E. Mizushima, T. Hayashi, M. Tanaka, *Org. Lett.* **2003**, *5*, 3349–3352; d) J. Zhang, C.-G. Yang, C. He, *J. Am. Chem. Soc.* **2006**, *128*, 1798–1799; e) C. Brouwer, C. He, *Angew. Chem.* **2006**, *118*, 1776–1779; *Angew. Chem. Int. Ed.* **2006**, *45*, 1744–1747; f) D. Kadzimirsz, D. Hildebrandt, K. Merz, G. Dyker, *Chem. Commun.* **2006**, *6*, 661–662.
- [8] a) R. S. Robinson, M. C. Dovey, D. Gravestock, *Eur. J. Org. Chem.* 2005, 505-511; b) Y. Luo, Z. Li, C. Li, *Org. Lett.* 2005, 7, 2675-2678; hydroamination was proposed to precede cyclization.
- [9] See the Supporting Information for detailed procedures.
- [10] For a proposed six-membered transition state in the Pdcatalyzed oxidative amination of alkenes, see: J. L. Brice, J. E. Harang, V. I. Timokhin, N. R. Anastasi, S. S. Stahl, J. Am. Chem. Soc. 2005, 127, 2868–2869.
- [11] For selected examples of the synthetic utility of silyl ketene acetals and aminals, see: a) I. Fleming, A. Barbero, D. Walter, *Chem. Rev.* 1997, 97, 2063–2192; b) *Silicon in Organic, Organometallic, and Polymer Chemistry* (Ed.: M. A. Brook), Wiley-VCH, Weinheim, 2000; c) I. F. Lutsenko, Y. I. Baukov, A. S. Kostyuk, N. I. Savelyeva, V. K. Krysina, *J. Organomet. Chem.* 1969, 17, 241–262; d) R. Zerrer, G. Simchen, *Synthesis* 1992, 922–924; e) K. Neuschütz, J. Simone, T. Thyrann, R. Neier, *Helv. Chim. Acta* 2000, 83, 2712–2737.