Journal of Organometallic Chemistry, 323 (1987) C35-C38 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

DER ERSTE MONOPHOSPHACYCLOBUTADIEN-COBALT(I)-KOMPLEX DURCH CODIMERISIERUNG VON t-BUTYLPHOSPHAACETYLEN MIT BIS(TRIMETHYLSILYL)ACETYLEN

PAUL BINGER *, ROMAN MILCZAREK, RICHARD MYNOTT,

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (B.R.D.)

and MANFRED REGITZ

Fachbereich Chemie der Universität, Erwin-Schrödinger-Strasse, D-6750 Kaiserslautern (B.R.D.) (Eingegangen den 2. Februar 1987)

Summary

The first ever monophosphacyclobutadiencobalt(I) complex (7) was synthesized by codimerization of t-butylphosphaacetylene (1) with bis(trimethylsilyl)acetylene (4) in the presence of equimolar amounts of η^5 -cyclopentadienediethenecobalt (2). 7 was characterized unambiguously by mass, ¹H NMR, ¹³C NMR and ³¹P NMR spectroscopy.

Kürzlich war es uns [1], sowie einer anderen Arbeitsgruppe [2], unabhängig voneinander gelungen, η^5 -Cyclopentadienyl- η^4 -1,3-diphosphacyclobutadien-cobalt (I)-Komplexe, z.B. 3, aus Phosphaalkinen und η^5 -Cyclopentadienylbis(ethen)cobalt (I) (2) [3] darzustellen (Gl. 1).

Da Dialkylacetylene, wie z.B. 2-Butin, in Gegenwart katalytischer Mengen 2 glatt zu Hexaalkylbenzolen cyclotrimerisieren, wobei der 20-Elektronenkomplex η^5 -Cyclopentadienyl- η^6 -Hexamethylbenzol-cobalt(I) als Zwischenprodukt nachgewiesen werden konnte [4], lag es nahe, in Gegenwart von 2 eine Codimerisierung oder auch eine Cotrimerisierung von Alkinen mit Phosphaalkinen zu versuchen.

Die Reaktion zwischen dem gut zugänglichen und bei Raumtemperatur stabilen t-Butylphosphaacetylen (1) [5] und 2-Butin in Anwesenheit equimolarer Mengen an

SCHEMA 1.

2 führt nicht zum gewünschten Erfolg; 2-Butin wird glatt cyclotrimerisiert, während 1 mit 2 in sehr guten Ausbeuten 3 ergeben. Dagegen reagiert ein Acetylen mit zwei sperrigen Resten, wie z.B. Bis(trimethylsilyl)acetylen (4) wie erhofft. Von 4 ist bekannt, dass es mit 2 den binuclearen Co-Komplex 5 liefert [4,6], aus dem in der Hitze mit weiterem 4 der Cyclobutadien-cobalt-Komplex 6 [7] dargestellt werden kann [8] (Schema 1).

Setzt man 2 mit 1 und 4 bei $110\,^{\circ}$ C um, so erhält man den gesuchten Monophosphacyclobutadien-cobalt(I)-Komplex 7 in bis zu 31% Ausbeute. Die Reaktion verläuft jedoch nicht einheitlich. Neben 7 entstehen noch in nahezu equimolarer Menge der 1,3-Diphosphacyclobutadien-cobalt(I)-Komplex 3 und je nach der Dauer der Umsetzung wechselnde Mengen an η^5 -Cyclopentadienyl- η^4 -tetra(trimethylsilyl)cyclobutadien-cobalt(I) (6). Zwischenprodukt all dieser Reaktionen ist höchstwahrscheinlich der Dicobaltkomplex 5, erkenntlich an der zwischenzeitlich auftretenden violetten Farbe des Reaktionsgemisches. 5 wird aus 2 und 4 bereits bei 60 °C gebildet [8]. In Abwesenheit von 1 kann man 6 aus 2 bzw. 5 und 4 bei $110\,^{\circ}$ C in 46% Ausbeute gewinnen.

Der erstmals dargestellte η^5 -Cyclopentadienyl- η^4 -monophosphacyclobutadiencobalt(I)-Komplex 7 ist ein bordeauxrotes Öl, das sich besonders von 3 nur schwer trennen lässt. Er wurde durch Elementaranalyse sowie mit Hilfe der Massen- und NMR (1 H-, 13 C-, 31 P-) spektroskopischen Daten eindeutig charakterisiert. 7 zeigt im

³¹P-NMR-Spektrum ein Singulett bei 3.3 ppm; der η^4 -gebundene Phosphacyclobutadienrest gibt sich im ¹³C-NMR-Spektrum durch Signale bei 116.2 (C(1), ¹J(PC) 43.5 Hz); 87.3 (C(2), ²J(PC) 1.5 Hz) und 72.6 ppm (C(3), ¹J(PC) 49.8 Hz) zu erkennen. Schliesslich wird im Massenspektrum die Molekülmasse M^+ = 394 beobachtet.

Zur Zeit sind Versuche im Gang, die Monophosphacyclobutadieneinheit vom Cobalt abzulösen, um die Eigenschaften des nur kinetisch stabilisierten, antiaromatischen Systems kennenzulernen.

Experimenteller Teil

 η^5 -Cyclopentadienyl- η^4 -[2-t-butyl-3,4-bis(trimethylsilyl)-1-phosphacyclobutadien]-co-balt (7). 1.7 g (9.4 mmol) 2 und 3.4 g (20 mmol) 4 werden in 30 ml Toluol gelöst und zum Rückfluss erhitzt. Bei dieser Temperatur wird zu der tiefvioletten Lösung in 5 h 0.7 g (7 mmol) 1 und 1.7 g (10 mmol) 4 in 10 ml Toluol getropft. Nach weiteren 2 h Rühren wird die braunrote Reaktionsmischung durch Filtration über Florisil von geringen Mengen unlöslicher Anteile befreit, das Lösungsmittel abdestilliert und das zurückbleibende rotbraune Öl auf einer mit Kieselgel 60 gefüllten Säule (θ 1.5 cm, l 37 cm) mit 350 ml Hexan eluiert. Aus dem ersten, gelben Eluat wird 0.52 g (16%) kristallines 6 isoliert. Das nachfolgende rote Eluat enthält 0.73 g reines 7 als rotes Öl (nach Abdestillieren des Hexans). Nach zwei rotbraunen Zwischenfraktionen, mit 0.52 g 7/3 (Verhältnis 75/25) und 0.40 g 7/3 (Verhältnis 8/92) (31 P-NMR) wird noch ein letztes Eluat mit 0.23 g reinem 3 erhalten.

Charakterisierung von 7: MS (70 eV) m/z: 394 (M^+ ; rel. Int. 66%); 294 (100); 196 (16); 124 (25); 73 (58). ³¹P-NMR, (32 MHz, C_6D_6 , H_3PO_4): 3.3 (s) ppm. ¹H-NMR (400 MHz, C_6D_6 ; TMS): 4.92 (s) (C_5H_5): 0.88 (d, J(HP) 1.0 Hz, CMe₃); 0.24 (s, SiMe₃); 0.13 ppm (d, J(HP) 1.0 Hz; SiMe₃). ¹³C-NMR (75 MHz, C_6D_6 , TMS): 116.2 (d, J(PC) 43.5 Hz; C(1)); 87.3 (d, J(PC) 1.5 Hz; C(2)); 72.6 (d, J(PC) 49.8 Hz; C(3)); 1.4 (qd, J(CH) 118 Hz; J(PC) 5.6 Hz); Si(CH_3)₃); 2.3 (q, $^1J(CH)$ 119 Hz; Si(CH_3)₃); 34.0 (d, J(PC) 6.6 Hz; $C(CH_3)_3$); 31.4 (qd, $^1J(CH)$ 125 Hz; J(PC) 5.6 Hz; C (CH_3)₃); 80.1 (d, $^1J(CH)$ 177 Hz; C_5H_5). Gef. C, 54.60; H, 7.86; Co, 14.76. $C_{18}H_{32}CoPSi_2$ (394.5) ber.: C, 54.80; H, 8.18; Co, 14.94%.

 $η^5$ -Cyclopentadienyl- $η^4$ -tetra(trimethylsilyl)cyclobutadien (6). Eine Lösung von 0.8 g (3.25 mmol) 2 und 5.5 g (32.5 mmol) 4 wird 16 h auf 110 °C erhitzt. Hierbei ändert sich die Farbe der Lösung von rotbraun über violett nach dunkelbraun. Nach Abdestillieren aller flüchtigen Bestandteile bei bis 30 °C/12 Torr wird der verbleibende braune, pulverförmige Rückstand über eine 30 cm Säule, gefüllt mit Al_2O_3 , chromatographiert (Lösungsmittel: Hexan) und das hellgelbe Eluat aufgefangen. Eindampfen liefert einen gelben Feststoff, der aus Pentan umkristallisiert wird: 0.7 g (46%) 6 als gelbe Kristalle von Schmp. 219–220 °C (Lit. [7] 200–220 °C). MS (70 eV) m/z: (rel. Intensität) 464 (M^+ , 12%); 294 (100); 196 (17); 73 (52). 1 H-NMR (80 MHz, C_6D_6 , TMS): 4.80 (s, 5H); 0.13 (s, 36H) ppm. 13 C-NMR (75 MHz, C_6D_6): 82.3 (d, J(CSi) 67.1 Hz); 2.7 (dd, J(CH) 119 Hz; J(CSi) 52.9 Hz)); 79.9 ppm (d, J(CH) 175 Hz). Gef.: C, 54.70; H, 8.53; Co, 12.68. $C_{21}H_{41}$ CoSi₄ (464.2) ber.: C, 54.26; H, 8.89; Co, 12.68%.

Dank. Wir danken der Stiftung Volkswagenwerk für die grosszügige Förderung dieser Arbeit.

Literatur

- P. Binger, R. Milczarek, R. Mynott, M. Regitz und W. Rösch, Angew. Chem., 98 (1986) 645; Angew. Chem. Int. Ed. Engl., 25 (1986) 644.
- 2 P.B. Hitchcock, M.J. Maah und J.F. Nixon, J. Chem. Soc. Chem. Commun., (1986) 737.
- 3 K. Jonas, E. Defense und D. Habermann, Angew. Chem., 95 (1983) 729; Angew. Chem. Int. Ed. Engl., 22 (1983) 716.
- 4 K. Jonas, Angew. Chem., 97 (1985) 292; Angew. Chem. Int. Ed. Engl., 24 (1985) 295.
- 5 G. Becker, G. Gresser und W. Uhl, Z. Naturforsch. B, 36 (1981) 16.
- 6 B. Eaton, J.M. O'Connor und K.P.C. Vollhardt, Organometallics, 5 (1986) 394.
- 7 J.R. Fritch und K.P.C. Vollhardt, Israel J. Chem., 26 (1985) 131.
- 8 K. Cibura, Dissertation Universität Bochum, 1985.