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ABSTRACT: In this Letter, the transition-metal-catalyzed chlori-
nation of alkenes is reported. In the presence of the commercially
available and inexpensive N-chlorosuccinimide and without
additive, the Pd-catalyzed chlorination of acrylamides by C−H
bond activation was developed at room temperature under air.
Under these mild reaction conditions, the versatility of the
methodology was demonstrated as an array of acrylamides was functionalized to selectively provide the corresponding difficult-
to-synthesize chlorinated olefins as a single Z stereoisomer. Mechanistic studies were conducted to get insights into the reaction
mechanism, and post-functionalization reactions further demonstrated the synthetic utility of the approach toward the access to high
value-added chlorinated compounds.

Chlorinated molecules are widely present in compounds of
interest such as pharmaceuticals, agrochemicals, and

natural products.1 In particular, halogenation of aromatic
derivatives is at the forefront of innovation because they have
widespread applications in organic chemistry. Therefore, the
development of novel methods to access them has attracted
strong interest from the scientific community.2 Among them,
special attention has been paid to the transition-metal-catalyzed
halogenation of aromatic derivatives by C−H bond activation
with I, Br, and Cl atoms.3 Indeed, transition-metal-catalyzed C−
H bond functionalizations have completely reshaped the field of
organic chemistry.4 This straightforward tool for molecular
synthesis has further opened the chemical space, enabling
applications to various fields.5 In particular, the transition-metal-
catalyzed directed functionalization of the more challenging
vinylic derivatives by C−H bond activation has been well
studied over the years, offering straightforward and selective
access to the difficult-to-synthesize Z isomer.6 In sharp contrast,
the halogenation of vinylic derivatives by C−H bond activation6

still remains restricted to a handful of examples and requires
further investigation as it offers selective access to the
challenging and ubiquitous Z-olefinic moiety. The quest for
efficient and selective tools toward Z-olefins is of high
importance because this scaffold might be found in several
bioactive compounds, such as Selinexor.
In the realm of the transition-metal-catalyzed halogenation of

olefins by C−H activation, bromination and iodination
reactions have been mainly studied using various transition-
metal catalysts and have led to major contributions. In 2013,
Glorius reported the Rh(III)-catalyzed bromination and
iodination of acrylamides,7 and one year later, they depicted
the iodination of acrylamides8 via a Cp*Co(III) catalysis. In
2019, Carreira described the Pd-catalyzed iodination of
unactivated olefins using picolamide as a directing group

(Scheme 1).9 However, the direct and regioselective synthesis

of Z-chlorinated acrylic acid derivatives is still elusive despite the
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Scheme 1. State of the Art and Present Work
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clear interest in the corresponding vinyl chloride compounds.1

Therefore, the elaboration of a new synthetic approach toward
these chlorinated molecules represents a significant challenge in
modern organic chemistry and is still an unmet goal. To date, the
existing methods to synthesize Z-β-chloroacrylic acid derivatives
generally rely on a Vilsmeier−Haack reaction,10 a Wittig
reaction,11 a chloropalladation/Heck reaction sequence,12

chlorination of propagyl alcohols,13 as well as hydrochlorina-
tion,14 chloroacylation,15 and chlorocarbonylation16 reactions
of alkynes, among others. A lack of E/Z selectivity and the need
to have the proper alkynes are the main synthetic limitations of
these methods that need to be overcome. In addition, to meet
the continuous demand for more sustainable transformations,
the development of C−H activation reactions under mild
conditions (no additives, room temperature) is still highly
desirable. Keeping these considerations in mind and pursuing
our current interest in the functionalization of vinylic derivatives
by C−H bond activation,17 we report herein the unprecedented
Pd(II)-catalyzed chlorination of various α- and α,β-substituted
acrylamide derivatives at room temperature.
At the outset of the study, the Pd-catalyzed chlorination of the

α-phenylacrylamide 1awas studied (Table 1). In the presence of

a stoichiometric amount of NCS and using PdCl2 as a catalyst,
1a was smoothly converted into the corresponding chlorinated
product 2a in 85% yield under an air atmosphere in 8 h (Table 1,
entry 1). The reaction turned out to be completely
diastereoselective, as a single Z-isomer was obtained, as
ascertained by 2D NMR experiments.18 The replacement of
PdCl2 by other copper-based catalysts (Table 1, entries 2 and 3)
led to no expected product 2a, and only the product resulting
from the chlorination at the C5 position of the 8-aminoquino-
line part was observed. The catalyst loading was also important
to selectively get the functionalization of the olefin. Indeed,
when 5 mol % of the catalyst was used, the reaction furnished 2a
in only 25% yield, along with the chlorinated product on the
aminoquinoline part (Table 1, entry 4). A control experiment
was conducted, and in the absence of a catalyst, 2a was not
obtained, and the same side reaction was prominent (Table 1,
entry 5). Increasing the reaction time (Table 1, entry 6) or
running the reaction under an inert atmosphere (Table 1, entry
7) did not have any significant impact on the outcome of the

reaction. Finally, using nondistilled DMF or a mixture of DMF/
H2O (9:1), the reaction afforded 2a, albeit in somewhat lower
yields (Table 1, entries 8 and 9), hence showcasing the
robustness of the transformation. Note that attempts to extend
the reaction to the bromination of 1a were unsuccessful.19

With the best reaction conditions in hand, access to
trisubstituted acrylamides was achieved via the Pd-catalyzed
chlorination of an array of α-aryl-substituted acrylamides
(Scheme 2, 2a−q). When 1a was used as the substrate, the

reaction was efficiently 20 times scaled up, offering access to ∼1
g of 2a (0.99 g, 80%) without erosion of the yield (85% on 0.2
mmol scale). The reaction turned out to be highly regio- and
diastereoselective to the expected product, and only the
monochlorination of the olefin part was observed. Several
acrylamides bearing an arene at the α-position substituted by an
electron-donating (1b−e) group or halogens (1f−i) at the para
position were chlorinated. The reaction was also tolerant of the
trifluoromethyl group (2k). Meta- and ortho-substituted α-aryl
acrylamides (2j−o) were chlorinated, and the substitution
pattern on the arenes did not have any impact on the efficiency

Table 1. Reaction of 1a with NCS: Optimization Studies

entry variation from standard conditions yield (%)a

1 none 85
2 CuI instead of PdCl2 0
3 CuCl2 instead of PdCl2 0
4 5 mol % of PdCl2 instead of 10 mol % 25b

5 no catalyst 0
6 16 h instead of 8 h 82
7 Ar atmosphere instead of air 83
8 no distilled DMF instead of distilled one 75
9 DMF/H2O (9:1) instead of DMF 48

aIsolated yields. All reactions were performed on a 0.2 mmol scale.
bProduct was obtained along with the product resulting from the
chlorination at the C5 position of the 8-aminoquinoline part in 31%
yield.

Scheme 2. Scope of the Chlorination Reactiona

aReaction conditions: acrylamide 1 (0.2 mmol), NCS (1 equiv),
PdCl2 (10 mol %), DMF (2 mL), 25 °C, 8 h, air. Isolated yields are
given. bReaction performed on a 4 mmol scale (1.1 g of 1a), 20 h. c20
h.
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of the transformation (similar yields for compounds 2b, 2j, 2m).
Note that the structure of 2n was further confirmed by X-ray
analysis (CCDC 2016282). Acrylamides with disubstituted
arenes (1p and 1q) were also suitable substrates in this
transformation. The methodology was successfully extended to
the chlorination of the methacrylamide 1r, leading to the
corresponding product 2r in 53% yield.
Pleasingly, the approach was successfully applied to the

functionalization of the α,β-disubstituted acrylamides, with the
stereoselective access to the tetrasubstituted acyclic olefin still
being a synthetic challenge. α,β-Disubstituted acrylamides such
as the dimethyl acrylamide (1s) and the cyclohex-1-enecarbox-
amide (1t) were smoothly converted into the fully decorated
olefins 2s and 2t. Even the amide derived from the 5-methoxy-8-
aminoquinoline 1u was smoothly functionalized in a longer
time.
To further illustrate the modularity of the chlorinated amides,

they were easily converted into other classes of compounds. The
directing group was cleaved under various reaction conditions
(Scheme 3). When 2a and 2u were engaged under acidic or
oxidative conditions, the corresponding ester 3 and the primary
amide 4 were obtained in 55 and 77% yields, respectively.

Taking advantage of the versatility brought by the
introduction of a chlorine atom on the olefinic derivative as a
“synthetic transformable handle” for post-functionalization, we
investigated further structural modifications by the trans-
formation of the carbon−chlorine bond into other carbon-
functional groups (Scheme 4). The reaction of 2a with
morpholine led to the corresponding product 5 as the single
E-isomer, ascertained by NMR.18 The subsequent thiolation of
2a provided an inseparable Z/E mixture of the thiolated

compound (6a/6b) in 75% yield, with the Z-isomer being the
major one.20 Moreover, taking advantage of the presence of an
iodine atom on the aromatic ring of 2f, a Suzuki reaction was
performed, leading to the corresponding compound 7, with the
chlorinated olefin part remaining intact at the end of the
reaction.
To gain more insight into the mechanism of the reaction,

several experiments were conducted.18 First, when scrambling
experiments were performed, an H/D exchange was observed,
suggesting that the C−H bond activation step is reversible.
Then, 1i and the isotopically labeled olefin [D]-1i were engaged
in parallel reactions, and a kinetic isotopic effect (KIE) of 2.1 was
measured. These results indicated that the rate-determining step
is most likely the palladacycle formation. Experiments
conducted with 1a in the presence of TEMPO, BHT, and 1,4-
dinitrobenezene as radical scavengers showed no significant
effect on the outcome of the reaction; the reaction was just
slowed down (remaining unreacted 1a at the end of the
reaction), explaining the slightly lower yields.18 Therefore, a
radical process might be ruled out. On the basis of these
considerations, the following plausible mechanism was
suggested: At first, coordination of the Pd(II) catalyst with the
bidentate directing group of 1a followed by the reversible
formation of the palladacycle II. This latter underwent an
oxidative addition followed by a reductive elimination to furnish
the expected product 2a and to regenerate the catalyst (Scheme
5). Note that a redox neutral Pd(II)-basedmechanismmight not
be excluded.21

In summary, we developed a new methodology allowing the
direct chlorination of acrylamide derivatives under Pd catalysis
by C−H bond activation. This approach offered access to tri-
and tetra-substituted olefins in a complete stereoselective
manner toward the Z-isomer (21 examples, up to 89% yield).
This original transformation occurred at room temperature and
was suitable for a broad variety of acrylamides. Indeed, α-
substituted and α,β-disubstituted acrylamide derivatives were
efficiently functionalized. The salient features of this chlorina-
tion transformation are the lack of additives (oxidant, ligand,
acid or base, etc.), the air and moisture tolerance, the total

Scheme 3. Deprotection of the Directing Groupa

aReactions were carried out on a 0.1 mmol scale. Isolated yields are
given. (i) TsOH (3 equiv), MeOH (0.2 M), 100 °C, 7 days, Ar. (ii)
CAN (3 equiv), MeCN/H2O (5:1, 0.3 M), 25 °C, 16 h, Ar.

Scheme 4. Synthetic Applicationsa

aReactions were carried out on a 0.1 mmol scale. Isolated yields are
given. (i) Morpholine (1.5 equiv), DMF (0.2 M), 90 °C, 16 h, Ar. (ii)
3-Methylbenzenethiol (1.5 equiv), Et3N (1.5 equiv), DMF (0.2 M),
50 °C, 24 h, Ar. (iii) Pd(PPh3)4 (5 mol %), p-tolylboronic acid (2
equiv), K2CO3 (1.5 equiv), toluene (0.2 M), 100 °C, 16 h, Ar. Q = 8-
quinolyl.

Scheme 5. Suggested Mechanism
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control of the regio- and diastereoselectivity, the very mild
reaction conditions (room temperature), and the easy scale-up.
Moreover, access to value-added scaffolds, which hinged on the
use of the chlorine atom as a linchpin, further demonstrated the
key importance of chlorinated compounds and the need to
develop methodologies to reach them. By tackling an unmet
synthetic goal, this new approach considerably extends the
portfolio of chlorinated molecules and paves the way toward
original synthetic routes to unsaturated chlorinated compounds.
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(7) Kuhl, N.; Schröder, N.; Glorius, F. Rh(III)-Catalyzed Halogen-
ation of Vinylic C-H Bonds: Rapid and General Access to Z-Halo
Acrylamides. Org. Lett. 2013, 15, 3860−3863.
(8) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vaśquez-Ceśpedes, S.;
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