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Abstract A simple and convenient synthesis of indole-fused pyridazi-
no[4,5-b][1,4]benzoxazepin-4(3H)-ones is described. A range of 2-(1H-
indol-2-yl)phenols and 4,5-dichloropyridazin-3-ones are compatible
with this reaction. A Smiles rearrangement is proposed as a key step in
the highly regioselective construction of the products. The easy avail-
ability of the starting materials makes this an appealing method in
organic synthesis.

Key words indoles, indolopyridazinobenzoxazepinones, regioselectivi-
ty, polycyclic heterocycles, Smiles rearrangement

Pyridazino[4,5-b][1,4]benzoxazepin-4(3H)-one ana-
logues are among the most attractive structural motifs to
the organic synthesis community, because these com-
pounds are valued for their diverse biological activities.1–6

In the recent decades, a great deal of effort has been devoted
toward their synthesis.7–10 However, heterocycle-fused pyr-
idazino[4,5-b][1,4]benzoxazepin-4(3H)-ones have attracted
surprisingly little attention. In this regard, indoles are im-
portant heterocyclic units that exhibit a wide range of bio-
logical activities.11–12 Fusion of an indole skeleton with a
pyridazino[4,5-b][1,4]benzoxazepin-4(3H)-one would lead
to a new heterocycle library (Figure 1). To the best of our
knowledge, no synthesis of this new fused heterocycle sys-
tem has been reported and, consequently, the development
of an economic and efficient method for their preparation
is in high demand.

Figure 1  The structure of indole-fused pyridazino[4,5-b][1,4]benzox-
azepin-4(3H)-ones
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Table 1  Optimization of the Reaction Conditionsa

Entry Temp (°C) Base Solvent Yieldb (%)

1  50 K2CO3 DMF 81

2  80 K2CO3 DMF 90

3 100 K2CO3 DMF 87

4  80 Na2CO3 DMF 71

5  80 Cs2CO3 DMF 82

6  80 K2CO3 DMSO 71
a Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), base (2.5 equiv), 
solvent, 3 h.
b Isolated yield after column chromatography.
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The Smiles rearrangement is a powerful and important
tool for the construction of fused heterocycles.13–17 In com-
parison with stepwise transformations, one-pot syntheses
are much preferred due to their convenience. Consequently,
the Smiles rearrangement has been introduced into one-
pot syntheses of fused heterocycle systems.18–21 On the ba-
sis of this concept, many N- and O-containing fused hetero-
cycles have been conveniently produced with high efficien-
cies.8,22–24 Inspired by the reported works,9,10,25 we devel-
oped a one-pot, highly regioselective protocol for the
construction of indole-fused pyridazino[4,5-b][1,4]benzox-
azepin-4(3H)-ones through a Smiles rearrangement, using
readily available starting materials.

We began our study by using 2-(1H-indol-2-yl)phenol
(1a) and 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyri-
dazin-3(2H)-one (2a) as model substrates. To our delight,
the desired product 3a was obtained in 81% yield under our
initial conditions (Table 1, entry 1). Raising the reaction
temperature slightly improved the yield (entries 2 and 3),
and the best result was achieved at 80 °C (entry 2). Next, a
screen of bases indicated that potassium carbonate was the
optimal base among those tested (entries 2, 4, and 5). The
use of dimethyl sulfoxide as solvent gave an inferior result
(entry 6). We therefore concluded that the best results were
obtained with potassium carbonate as base and N,N-di-
methylformamide as solvent at 80 °C, which gave the de-
sired product 3a in 90% yield.

With the optimal reaction conditions in hand, we next
examined the substrate scope. Various alkyl-substituted
4,5-dichloropyridazin-3-ones 2a–f reacted smoothly with
2-(1H-indol-2-yl)phenol (1a) to give the corresponding
products 3a–f in good to excellent yields (Scheme 1). It was
noteworthy that the allyl-substituted 4,5-dichloropyridaz-
in-3-one 2f was also tolerated in this transformation, giving
the corresponding product 3f in 76% yield.

Scheme 1  The scope of 4,5-dichloropyridazin-3-ones. Reaction 
conditions: 1a (0.3 mmol), 2a–f (0.3 mmol), K2CO3 (2.5 equiv), DMF 
(2 mL), 80 °C, 3 h.
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Scheme 2  The scope of 2-(1H-indol-2-yl)phenols. Reaction condition: 
1b–m (0.3 mmol), 2b (0.3 mmol), K2CO3 (2.5 equiv), DMF (2 mL), 
80 °C, 3 h.
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On the basis of these preliminary results, we then evalu-
ated the scope of the 2-(1H-indol-2-yl)phenols with vari-
ous substituents 1b–m in this transformation (Scheme 2).
To our satisfaction, all the tested 2-(1H-indol-2-yl)phenols
worked well in the reaction, delivering the corresponding
product 3g–o in 63–84% yield. Remarkably, the structure of
3n was unambiguously confirmed by X-ray crystallographic
analysis (Figure 2).26 The substrates were not limited to 2-
(1H-indol-2-yl)phenols; interestingly, this method could
also be extended to 2-(1H-benzimidazol-2-yl)phenols, and
under the same reaction conditions, the product 3p was
produced in 52% yield. Similarly, substituents on the 2-(1H-
benzimidazol-2-yl)phenol had no deleterious effect on the
outcome (3q, 3r).

To probe the reaction mechanism, two control experi-
ments were carried out (Scheme 3). When attempts were

made to react 2-(2-methoxyphenyl)-1H-indole or 2-phenyl-
1H-indole with substrate 2a under the standard conditions,
no reaction occurred and the indole starting material was
recovered in 80% and 69% yield, respectively. These experi-
ments indicated that the indole nitrogen cannot serve as a
nucleophilic center under the optimal reaction conditions,
and that a hydroxy group in the substrate is indispensable

Scheme 3  Control experiments
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Scheme 4  Possible reaction mechanism
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Figure 2  The X-ray structure of compound 3n
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for this transformation. We therefore deduced that a Smiles
rearrangement is involved in this reaction.

Based on previous reports8,25 and on our preliminarily
mechanistic experiments, a possible reaction mechanism
was proposed (Scheme 4). Under basic conditions, the
intermediate A is initially formed through direct nucleo-
philic substitution of the phenolic oxygen anion with the
4,5-dichloropyridazin-3-one. The indole nitrogen anion B is
then generated under the same reaction conditions. Next, a
Smiles rearrangement occurs preferentially (path a), rather
than direct nucleophilic cyclization (path b), to give inter-
mediate C. Finally, the phenolic oxygen anion undergoes a
second nucleophilic substitution to afford the desired product.

In summary, we have successfully developed a highly
regioselective synthetic route for the construction of
indolo[1,2-d]pyridazino[4,5-b][1,4]benzoxazepin-9(8H)-ones
through a Smiles rearrangement under transition-metal-
free conditions.27 A range of substrates with various func-
tional groups were compatible in this reaction and the cor-
responding products were obtained in good to high yields.
A probable involvement of a Smiles rearrangement in this
reaction was established by control experiments. Further
studies on applications of this reaction in synthesizing oth-
er fused heterocyclic compounds are currently in progress.
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