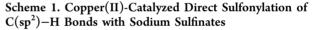
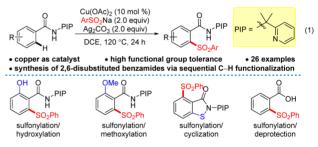

Copper(II)-Catalyzed Direct Sulfonylation of C(sp²)–H Bonds with Sodium Sulfinates

Wei-Hao Rao and Bing-Feng Shi*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Supporting Information

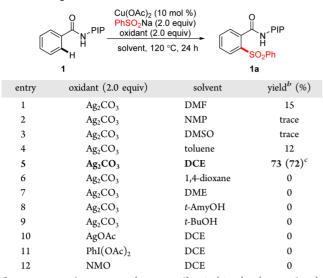

ABSTRACT: A copper-catalyzed direct sulfonylation of $C(sp^2)$ -H bonds with sodium sulfinates using a removable directing group is described. This reaction tolerates a wide range of functional groups, providing an efficient protocol for the synthesis of diverse aryl sulfones. Moreover, a series of 2,6-disubstituted benzamides could be synthesized via sequential C-H functionalization.



C ulfones are an important class of structural moieties found \bigcirc in pharmaceuticals and advanced materials.¹ Moreover, sulfones could act as useful precursors for C-C bond formation via fragment coupling and Julia olefination in synthetic chemistry.² Consequently, the synthesis of sulfones has attracted more and more attention.³ Recently, direct sulfonylation of C-H bonds cast a new vision for sulfone synthesis from the viewpoint of step- and atom-economy.^{4–6} In this regard, the pioneering work from the Dong group described Pd-catalyzed C(sp²)-H bond sulfonylation using pyridine as the auxiliary.^{5a} Later, the first direct evidence of $C(sp^2)-S$ reductive elimination from high-valent Pd(IV) intermediates was disclosed by the same group.5b However, these transformations relied on the use of expensive palladium catalysts and unremovable pyridine directing groups. Thus, it would be beneficial to replace the palladium catalyst with a lowcost metal for the direct $C(sp^2)$ -H bond sulforylation.

In recent years, significant advances in Cu-catalyzed/ mediated C-H functionalization have been achieved.^{7,8} In particular, bidentate directing groups, such as AQ (8-aminoquinolinyl),^{9,10} PIP (2-pyridinyl isopropyl),¹¹ and an amide-tethered oxazoline,¹² have been widely used in copper-catalyzed direct C-H functionalization reactions. As part of our ongoing research in cheap-metal-catalyzed C-H functionalization reactions,^{11,13} we envisioned that it would be possible to realize copper-catalyzed direct sulforylation of $C(sp^2)$ -H bonds with the assistance of a PIP group. Recently, Jiang reported an elegant example of Cu-catalyzed coupling of oxime acetates with sodium sulfonates to access sulfonylvinylamine and β -ketosulfones.^{3b} To this end, sodium sulfinates were chosen as the benchmark sulfonylation reagents since sodium sulfinates are readily accessible and stable.^{3b,h} Herein, we report a copper-catalyzed direct sulfonylation of $C(sp^2)$ -H bonds with sodium sulfinates directed by a removable directing group.¹⁴ This reaction tolerates a broad range of functional groups, providing an efficient protocol for the synthesis of aryl sulfones (Scheme 1). Moreover, a series of 2,6-disubstituted

benzoic acids could be synthesized via sequential C–H functionalization.



We commenced our investigation by the reaction of benzamide derivative 1 with PhSO₂Na as the model reaction (Table 1). After extensive screening of copper catalyst, we were pleased to find that the desired product 1a was obtained in 15% yield when 10 mol % of Cu(OAc)₂ was used as catalyst and Ag₂CO₃ as oxidant (entry 1, see the Supporting Information for detailed optimization of copper catalyst). A thorough screening of solvents revealed that the reaction proceeded efficiently in DCE to afford the product 1a in 72% isolated yield (entry 5). The use of other oxidants, such as AgOAc, PhI(OAc)₂, and NMO, did not give any desired product (entries 10–12).

With the optimized conditions in hand, we next explored the scope of benzamides. Generally, both electron-rich and electron-deficient benzamides reacted smoothly with $PhSO_2Na$ to afford the corresponding products in moderate to high yields (Figure 1). Fluoro (**3a** and **6a**), chloro (**7a** and **14a**), bromo (**8a**), and trifluoromethyl (**10a**) groups were well tolerated (Figure 1). Reactions with substrates bearing a methyl or fluoro group in the *ortho* position gave the desired products in lower

Received: April 23, 2015

Table 1. Optimization of the Reaction Conditions^a

"Reaction conditions: **1a** (0.1 mmol), $Cu(OAc)_2$ (10 mol %), $PhSO_2Na$ (2.0 equiv), and oxidant (2.0 equiv) in solvent (1.0 mL) at 120 °C for 24 h. ^{b1}H NMR yields using CH_2Br_2 as the internal standard. ^cIsolated yield in parentheses.

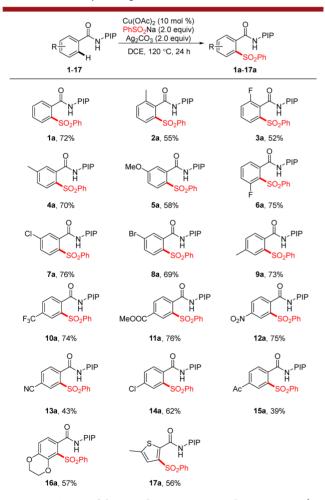


Figure 1. Scope of benzamides. Reaction conditions: 1-17 (0.2 mmol), $Cu(OAc)_2$ (10 mol %), $PhSO_2Na$ (0.4 mmol), and Ag_2CO_3 (0.4 mmol) in DCE (2.0 mL) at 120 °C for 24 h under N₂. Isolated yields.

yields (2a and 3a), largely due to the steric congestion caused by the amide. When *meta*-fluorobenzamide 6 was employed as substrate, sulfonylated product 6a was obtained exclusively, largely due to enhanced kinetic acidity of the corresponding C-H bond. In addition, 2,3-dihydrobenzo[b][1,4]dioxine-6carboxamide 16 also reacted predominantly adjacent to the dioxine, indicating that the coordination of the dioxine could potentially stabilize the arylcopper intermediates. Moreover, the thiophene substrate could also be subjected to the sulfonylation reaction to give the desired product 17a in 56% yield.

Subsequently, the scope of sodium sulfinates was examined. As shown in Figure 2, a variety of sodium arylsulfinates bearing

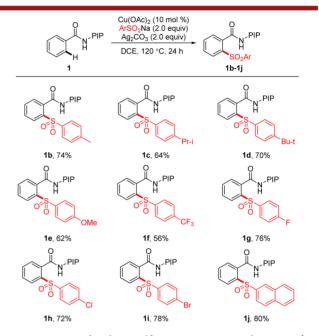
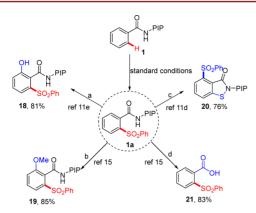



Figure 2. Scope of sodium sulfinates. Reaction conditions: 1 (0.2 mmol), $Cu(OAc)_2$ (10 mol %), $ArSO_2Na$ (0.4 mmol) and Ag_2CO_3 (0.4 mmol) in DCE (2 mL) at 120 °C for 24 h under N_2 . Isolated yields.

both electron-donating groups $(1b-e, R = Me, OMe, {}^{i}Pr, and {}^{i}Bu)$ and electron-withdrawing groups $(1f-i, R = F, Cl, Br, and CF_3)$ were tolerated and gave the desired sulfonylated products in moderate to high yields. It was noteworthy that halides such as fluoride, chloride, and bromide could survive under the standard reaction conditions (1g-i), which could be used for further elaboration. Moreover, a sterically bulky sodium 2-naphthylsulfinate also reacted smoothly with 1 to give the desired product 1j in 80% yield. Unfortunately, no desired sulfonylation products were obtained when sodium alkyl sulfinates were employed.

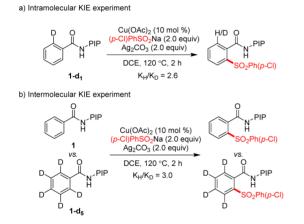
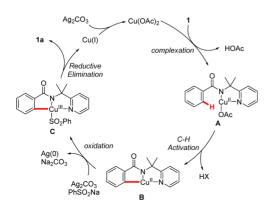

Diverse transformations of sulfonylated product 1a were performed as shown in Figure 3. Treatment of 1a with $Cu(OAc)_2$, TBAI, and Ag_2CO_3 in DMF afforded the *ortho*-hydroxylated product 18 in 81% yield.^{11e} Pd-catalyzed methoxylation of 1a with PhI(OAc)₂ as the oxidant and MeOH/*m*-xylene as the solvent gave 19 in 85% yield.¹⁵ Notably, 1a could be subjected to copper-mediated C–S/N–S bond formation to afford the benzoisothiazolone 20 in 76% yield.^{11d} Finally, the PIP auxiliary was efficiently removed via a mild *N*-nitrosylation/hydrolysis sequence to afford the corresponding carboxylic acid 21 in 83% yield.¹⁵

Figure 3. Diverse transformations of 1. Reaction conditions: (a) $Cu(OAc)_2$, TBAI, Ag_2CO_3 and DMF, 100 °C, 12 h. (b) $Pd(OAc)_2$, PhI(OAc)₂ and MeOH/*m*-xylene, 90 °C, 24 h. (c) $Cu(OAc)_2$ ·H₂O, S₈, TBAI, Ag₂O and DCM, 90 °C, 18 h. (d) NaNO₂, HOAc/Ac₂O, -15 °C; LiOH, 30% H₂O₂, THF/H₂O, -15 °C.


To gain further insight into the mechanism of the sulfonylation reaction, intra- and intermolecular KIE experiments were conducted (Scheme 2). The intramolecular and intermolecular KIE were determined to be 2.6 and 3.0, respectively, indicating that C-H cleavage could potentially be involved in the rate-limiting step.

Scheme 2. Intra- and Intermolecular KIE Experiments

On the basis of the observations above and related precedents, $10^{10-12,16}$ a plausible mechanism was proposed (Scheme 3). Complexation of benzamide 1 with copper acetate

Scheme 3. Proposed Mechanism

followed by cyclometalation via C–H cleavage affords Cu(II) intermediate **B**. The putative C₁N₁N-pincer type Cu(III) species **C** was formed by oxidation with Ag_2CO_3 and coordination with PhSO₂Na. Subsequent C–SO₂Ph reductive elimination of **C** leads to the formation of sulfonylation product **1a** together with Cu(I) species. Finally, the catalytic cycle is closed by the oxidation of Cu(I) species with Ag_2CO_3 .

In conclusion, we have developed a copper-catalyzed direct sulfonylation of $C(sp^2)$ -H bonds with sodium sulfinates with the assistance of a PIP group. The reaction demonstrates excellent regioselectivity with good functional group tolerance. Moreover, the procedure can occur in the presence of a catalytic amount of $Cu(OAc)_2$, providing a useful tool for the synthesis of sulfones.

ASSOCIATED CONTENT

Supporting Information

Experimental details and spectral data for all new compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b01198.

AUTHOR INFORMATION

Corresponding Author

*E-mail: bfshi@zju.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Basic Research Program of China (2015CB856600), the NSFC (21422206, 21272206), and Fundamental Research Funds for the Central Universities is gratefully acknowledged.

REFERENCES

(1) (a) Shcroft, C. P.; Hellier, P.; Pettman, A.; Wakinson, S. Org. *Process Res. Dev.* **2011**, *15*, 98. (b) Madasu, S. B.; Vekariya, N. A.; Hari Kiran, M. N. V. D.; Gupta, B.; Islam, A.; Douglas, P. S.; Babu, K. R. *Beilstein J. Org. Chem.* **2012**, *8*, 1400. (c) Fromtling, R. A. Drugs Future **1989**, *14*, 1165.

(2) For reviews, see: (a) El-Awa, A.; Noshi, M. N.; du Jourdin, X. M.; Fuchs, P. L. Chem. Rev. 2009, 109, 2315. (b) Plesniak, K.; Zarecki, A.; Wicha, J. Top. Curr. Chem. 2007, 275, 163. (c) Hassner, A.; Ghera, E.; Yechezkel, T.; Kleiman, V.; Balasubramanian, T.; Ostercamp, D. Pure Appl. Chem. 2000, 72, 1671. (d) Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon Press: New York, 1993.

(3) For recent examples, see: (a) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
(b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, S3, 4205. (c) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, S3, 4657. (d) Handa, S.; Fennewald, J. C.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, S3, 3432. (e) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. (f) Liu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156. (g) Yuan, G.; Zheng, J.; Gao, X.; Li, X.; Huang, L.; Chen, H.; Jiang, H. Chem. Commun. 2012, 48, 7513. (h) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J. Am. Chem. Soc. 2012, 134, 14694.

(4) For a recent review, see: Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. *Chem. Soc. Rev.* **2015**, *44*, 291.

(5) (a) Zhao, X.; Dimitrijevic, E.; Dong, V. J. Am. Chem. Soc. 2009, 131, 3466. (b) Zhao, X.; Dong, V. M. Angew. Chem., Int. Ed. 2011, 50, 932.

(6) (a) Zhang, D.; Cui, X.; Zhang, Q.; Wu, Y. J. Org. Chem. 2015, 80, 1517. (b) Xu, Y.; Liu, P.; Li, S.-L.; Sun, P. J. Org. Chem. 2015, 80, 1269.
(c) Li, X.; Xu, Y.; Wu, W.; Jiang, C.; Qi, C.; Jiang, H. Chem.—Eur. J. 2014, 20, 7911. (d) Saidi, O.; Marafie, J.; Ledger, A. E. W.; Liu, P. M.; Mahon, M. F.; Kociok-Köhn, G.; Whittlesey, M. K.; Frost, C. G. J. Am. Chem. Soc. 2011, 133, 19298.

(7) For selected reviews on copper-catalyzed/-mediated C(sp²)-H functionalization, see: (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. *Chem. Rev.* **2013**, *113*, 6234. (b) Campbell, A. N.; Stahl, S. S. *Acc. Chem. Res.* **2012**, *45*, 851. (c) Zhang, C.; Tang, C.; Jiao, N. *Chem. Soc. Rev.* **2012**, *41*, 3464. (d) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. *Angew. Chem., Int. Ed.* **2011**, *50*, 11062. (e) Daugulis, O.; Do, H.-Q.; Shabashov, D. *Acc. Chem. Res.* **2009**, *42*, 1074.

(8) For examples on copper-catalyzed/mediated $C(sp^2)-H$ functionalization reactions, see: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. **2006**, 128, 6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. **2006**, 35, 842. (c) Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. **2014**, 1, 777. (d) Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. **2014**, 16, 4702. (e) Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Org. Lett. **2014**, 16, 1104.

(9) For pioneering work on the use of the 8-aminoquinoline auxiliary, see: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. (c) For a recent review, see: Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.

(10) For selected examples of Cu-mediated C-H functionalization directed by AQ, see: (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. **2012**, 134, 18237. (b) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. **2013**, 135, 9342. (c) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. **2013**, 52, 4457. (d) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. **2013**, 135, 9797. (e) Wang, Z.; Ni, J.-Z.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed. **2014**, 53, 3496. (f) Wu, X.; Zhao, Y.; Zhang, G.; Ge, H. Angew. Chem., Int. Ed. **2014**, 53, 3706. (g) Katayev, D.; Pfister, K. F.; Wendling, T.; Goo\beta end. L. J. Chem.—Eur. J. **2014**, 20, 9902. (h) Dong, J.; Wang, F.; You, J. Org. Lett. **2014**, 16, 2884 and references cited therein.

(11) For examples of Cu-mediated C-H functionalization directed by PIP, see: (a) Li, B.; Liu, B.; Shi, B.-F. *Chem. Commun.* **2015**, *51*, 5093. (b) Yin, X.-S.; Li, Y.-C.; Yuan, J.; Gu, W.-J.; Shi, B.-F. Org. Chem. Front. **2015**, *2*, 119. (c) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. *Chem.*—*Eur. J.* **2015**, *21*, 205. (d) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. **2014**, *16*, 5644. (e) Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. **2014**, *16*, 3904.

(12) For examples of Cu-mediated C–H functionalization directed by an amide-tethered oxazoline, see: (a) Wang, H.-L.; Shang, M.; Sun, S.-Z.; Zhou, Z.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Org. Lett. **2015**, 17, 1228. (b) Shang, M.; Wang, H.-L; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. **2014**, 136, 11590. (c) Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. **2014**, 136, 3354.

(13) (a) Liu, Y.-J.; Zhang, Z.-Z.; Yan, S.-Y.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51, 7899. (b) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Zhang, Z.-Z.; Shi, B.-F. Chem. Commun. 2015, 51, 7341. (c) Liu, Y.-J.; Liu, Y.-H.; Yan, S.-Y.; Shi, B.-F. Chem. Commun. 2015, 51, 6388. (d) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51, 4069.

(14) During the preparation of this manuscript, a copper-mediated sulfonylation of $C(sp^2)$ -H bonds was reported; see: Liu, J.; Yu, L.; Zhuang, S.; Gui, Q.; Chen, X.; Wang, W.; Tan, Z. *Chem. Commun.* **2015**, *51*, 6418.

(15) Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. *Chem. Sci.* **2013**, *4*, 4187.

(16) (a) Zhang, H.; Yao, B.; Zhao, L.; Wang, D.-X.; Xu, B.-Q.; Wang, M.-X. J. Am. Chem. Soc. 2014, 136, 6326. (b) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560. (c) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068. (d) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.