

Efficient Synthesis of Maxonine Analogues from N-Substituted Benzyl-1formyl-9H-β-carbolines^[‡]

Samiran Hutait,^[a] Subhasish Biswas,^[a] and Sanjay Batra*^[a]

Keywords: Nitrogen heterocycles / Fused-ring systems / Natural products / Alkylation

Acid-catalyzed Pomeranz–Fritsch-type reaction between the acetal group at C-1 and the arene unit of the benzyl group at N-9 in 9-substituted benzyl-1-(dimethoxymethyl)-9*H*- β -carboline affords fused- β -carbolines that can be readily oxidized to furnish a maxonine-type framework. Mechanistically, the reaction proceeds via a protonated aldehyde as the intermediate, which undergoes attack by the activated arene subunit of the benzyl moiety. On the other hand, the Morita–Baylis–Hillman adducts of 1-formyl-*N*-substituted benzyl-

Introduction

Fused-β-carbolines are well represented in naturally occurring alkaloids^[1] and are endowed with a variety of biological properties.^[2] Given such importance, the synthesis of fused-β-carbolines has been and continues to be of significant interest to synthetic chemists.^[3] In a project directed towards the formulation of strategies for the construction of fused- β -carbolines, we are engaged in the synthesis of mimics of fused-\beta-carboline-based natural products employing substituted 1-formyl-9H-β-carboline as the starting material.^[4] Fortunately, we were able to harness this template for the synthesis of canthin-6-one, canthine, harmicine, and fascaplysin skeletons by using Morita-Baylis-Hillman (MBH) chemistry.^[5] Additionally, from this aldehyde we could realize successfully the synthesis of a variety of fused-\beta-carboline-based heterocycles through cycloaddition, ene-carbonyl, and multicomponent reactions.^[6] Maxonine, a pentacyclic alkaloid, is a fused-β-carboline derivative that was isolated from Simira maxonii and first reported in 1989 (Figure 1).^[7] Kelly et al. in 1993 disclosed the correct structure of this alkaloid and successfully achieved its total synthesis.^[8] Since then there has been a lack of literature pertaining to maxonine. Continuing with our efforts to prepare mimics of fused-\beta-carboline-based natural products, it occurred to us that we can achieve the

- [a] Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P. O. Box 173, Lucknow 226001, India Fax: +91-522-2623405
 E-mail: batra_san@yahoo.co.uk s batra@cdri.res.in
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200068.

9*H*- β -carbolines undergo an efficient P₂O₅-mediated intramolecular Friedel–Crafts reaction between the secondary hydroxy group and the activated phenyl group of the benzyl subunit to yield fused- β -carbolines. Investigations into the scope of the substrates reveal that the success of the methodology relies on the degree of activation of the phenyl ring. For substrates having less-activated phenyl groups, indolizinoindole derivatives were isolated in moderate yields only.

synthesis of the maxonine-type framework by using the MBH derivatives of *N*-substituted benzyl-1-formyl-9*H*- β -carboline. As illustrated in the retrosynthetic plan, generation of a carbocation at the benzylic position in the presence of acid followed by intramolecular Friedel–Crafts (FC) alkylation (route A) would afford desired product I (Scheme 1). Alternatively, Lewis acid catalyzed generation of the carbocation at the allylic position followed by intramolecular FC alkylation (route B) would result in new fused- β -carboline system II. Intramolecular FC reactions in MBH adducts by both routes are widely reported.^[9,10]

Figure 1. Maxonine, the pentacyclic β carboline-based alkaloid.

In addition, there are reports of several other cyclizations, wherein the benzylic alcohols served as substrates in intramolecular FC alkylation reactions under the influence of Lewis acids.^[11] Even during the course of this work, Lautens et al. reported a novel Lewis acid mediated intramolecular FC alkylation involving the benzylic hydroxy group and phenyl group in tetralins.^[12] Interestingly, during our study we discovered that treatment of *N*-substituted benzyl-9*H*-1-(dimethoxymethyl)- β -carbolines with acid for the preparation of *N*-substituted aldehydes for the MBH reac-

^[‡] CDRI Communication No. 8205

FULL PAPER

Scheme 1. Retrosynthetic scheme illustrating the two possibilities for the formation of fused β -carbolines from MBH derivatives by an intramolecular FC reaction.

tion results in the formation of fused- β -carbolines through a Pomeranz–Fritsch-type reaction in one pot. Further, we found that in our hands the Brønsted or Lewis acids were unsuccessful in executing the intramolecular FC alkylation, but P₂O₅ worked efficiently to promote the desired reaction to furnish the fused β -carbolines. The interesting results of this study are disclosed herein.

Results and Discussion

For performing the MBH reaction, the first objective was to prepare the required N-substituted benzyl-1-formyl-9H- β -carbolines. The present study therefore commenced with installing of the benzyl group containing an activated phenyl ring at the N-9 of C-1-(dimethoxymethyl)-9H-βcarbolines 1a and 1b, which in turn were prepared following the reported procedure.^[5a,5b] Considering the fact that electronically rich arene units are more suited for the FC reaction, we decided to install benzyl groups at the N-9 position, wherein the phenyl ring bears methoxy or methylenedioxy groups as substituents. For the purpose of optimization, initially 3,4,5-trimethoxybenzyl bromide was prepared and treated with 1a in the presence of Cs₂CO₃ in DMF at room temperature. The reaction was complete in 1 h and smoothly yielded 1-(dimethoxymethyl)-9-(3,4,5-trimethoxybenzyl)-9*H*- β -carboline (2a). In the next step, the acetal group of 2a was hydrolyzed in the presence of AcOH/ H_2O (2:3) as per the reported protocol.^[5a] As expected, the reaction furnished required aldehyde 7a in 90% yield (Scheme 2). With the optimized conditions in hand, we proceeded with the preparation of different starting materials. Several benzyl bromides containing electron-donating substituents in the phenyl ring were prepared and treated with **1a** and **1b** in the presence of Cs_2CO_3 in DMF to afford respective products 2a-6a and 2b-6b in excellent yields. Subsequently, compounds 2a-6a and 2b-6b were deprotected with AcOH/H₂O. Whereas compounds 2a, 2b, 3a, 3b, 5a, 5b, 6a, and 6b afforded the corresponding N-substituted benzyl-1-formyl-9H-β-carbolines 7a, 7b, 8a, 8b, 10a, 10b, 11a, and 11b, compounds 4a and 4b resulted in products

that were different from expected aldehydes 9a and 9b. Spectroscopic analysis of products led us to establish them as fused β -carbolines 14a and 14b. This result may be rationalized on the basis of a Pomeranz-Fritsch-type reaction between the acetal group and the activated arene in the presence of acid.^[13] However, in order to explain the synthesis of fused system 14a and 14b only in case of 4a and 4b, it is presumed that the reactive site in the phenyl ring of 4a and 4b is highly activated due to the +R effect of the two methoxy groups present at the ortho and para positions. Essentially, this facilitates attack of the arene ring to the oxonium ion generated in the presence of AcOH. Compared to this, amongst other analogues investigated, although 2a and 2b have similar effects, the presence of another methoxy group in the phenyl ring that is meta to the reactive site deactivates the arene unit because of its -I effect. Henceforth, we considered exploring stronger acids to achieve intramolecular cyclization in other substrates. Therefore, in a model study 2a was treated with several acids under different conditions. We were delighted to note that treatment of 2a with TFA/H₂O (100:1) at room temperature for 48 h resulted in product 12a. Mechanistically, the Pomeranz-Fritsch-type intramolecular reaction was anticipated to proceed either through sequential partial hydrolysis of the acetal group and attack of the arene on the generated activated carbon, or through complete hydrolysis

Scheme 2. Reagents and conditions: (a) Substituted benzyl bromide, Cs_2CO_3 , DMF, r.t., 1 h; (b) AcOH/H₂O (2:3), 90 °C, 45 min; (c) TFA/H₂O (100:1), r.t., 48–96 h.

of the acetal to afford the aldehyde first, which then forms an oxonium ion that is attacked by the electron-rich arene system. To investigate the suggested possibilities experimentally, in a representative experiment **7a** was treated with TFA/H₂O. After 24 h, the reaction was complete and yielded product **12a**. The formation of **12a** from **7a** proved that the reaction proceeded through formation of a protonated aldehyde as the intermediate. Additionally, during careful monitoring of the reaction of **2a** with TFA/H₂O by TLC, initially the spot for aldehyde **7a** was present, but it slowly disappeared to afford product **12a**, which suggested that a cascade sequence was operating.

In view of these results we proceeded to test the scope of the substrates and therefore acetals 2b, 3a, 3b, 5a, 5b, 6a, and **6b** were treated with TFA/H₂O. It was pleasing to note that all substrates produced respective fused- β -carbolines 12b, 13a, 13b, 15a, 15b, 16a, and 16b in 79–91% yield, though the time to reach completion of the reaction varied. We found that product 16b afforded from 6b started to disintegrate when subjected to column chromatography for purification, though no reason could be assigned for this unusual behavior. In order to ascertain that the intramolecular reaction is restricted to the phenyl ring carrying the electron-donating substituents, we investigated a similar reaction of 9-benzyl-1-(dimethoxymethyl)-9H-β-carboline with TFA/H₂O.^[14] However this substrate failed to undergo a similar transformation and the corresponding aldehyde was the sole product.

To demonstrate the usefulness of compounds 12-16 for obtaining the maxonine-type product in a model reaction, 12a was subjected to activated MnO₂-mediated oxidation in the presence of dichloromethane at room temperature. The reaction was complete in 2 h and afforded oxidized product 17 in 92% yield (Scheme 3).

Scheme 3. Reagents and conditions: (a) MnO₂, CH₂Cl₂, r.t., 2 h.

Because the synthesis of aldehydes **9a** and **9b** could not be achieved by the general route, an alternate procedure was sought to synthesize them. Towards this goal, compounds **1a** and **1b** were initially transformed into aldehydes **18a** and **18b**, which were then treated with 3,5-dimethoxybenzyl bromide in the presence of Cs_2CO_3 in DMF to afford desired products **9a** and **9b**, respectively (Scheme 2).

With the required aldehydes in hand, in the next stage of the study we focused on our original objective of accomplishing the intramolecular FC alkylation in the MBH adducts. Accordingly, the MBH reactions of aldehydes **7a**, **7b**, **8a**, **8b**, **9a**, **9b**, **10a**, and **11a** with alkenes **A**–**D** in the presence of DABCO were performed. For the purpose of optimization, 7a was treated with acrylonitrile (A) in the presence of DABCO to afford MBH adduct 7aA in 88% yield. In order to accomplish the intramolecular FC alkylation in 7aA, several reagents that have been reported in the literature for analogous reactions were evaluated, and the results of the study are compiled in Table 1.^[15] We failed to achieve the desired cyclization under the influence of Brønsted or Lewis acids. Basavaiah et al. reported the P2O5-mediated intramolecular FC alkylation in MBH adducts for preparing indenes.^[10a] Taking a cue from this report we evaluated the reaction of 7aA with P_2O_5 in dichloromethane at room temperature. Fortunately, the reaction was complete in 1 h to yield a major product in 85% yield, which was delineated to be required fused-β-carboline **19aA**. Although Basavaiah et al. suggested the formation of indene through electrocyclic ring closure, we speculate that the formation of the product in our case proceeds through an S_N2-type reaction. As reported,^[16] it is assumed that in the first step the phosphate ester is formed by the reaction of the N-substituted MBH adduct with P_2O_5 (exists as P_4O_{10}). Subsequently, this phosphate ester, which is a nice leaving group, can be eliminated by either route I, II, or III (Figure 2). To explain the formation of **19aA**, we presume that elimination by route I predominates.

Table 1. Optimization of the conditions for achieving the intramolecular FC alkylation in MBH adduct.^[a]

MeO + HO + OMe +									
7aA			19aA						
Catalyst	Solvent	Temp. [°C]	Time [h]	Yield [%]					
PPA	_	r.t.	12	1					
MeSO ₃ H	CH ₂ Cl ₂	r.t.	3	2					
H_2SO_4	CH_2Cl_2	r.t.	2	_					
silica H ₂ SO ₄	CH_2Cl_2	r.t.	3	_					
Yb(OTf) ₃	MeCN	90	3	_					
PTSA	CH_2Cl_2	r.t.	6	_					
FeCl ₃ ·6H ₂ O	CH_2Cl_2	r.t.	10	_					
BF ₃ ·Et ₂ O	CH_2Cl_2	r.t.	2	_					
P_2O_5	CH_2Cl_2	r.t.	1	85					
	N HO OMe 7aA Catalyst PPA MeSO ₃ H H ₂ SO ₄ silica H ₂ SO ₄ Yb(OTf) ₃ PTSA FeCl ₃ ·6H ₂ O BF ₃ ·Et ₂ O P ₂ O ₅	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline \\ & & & \\$	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$					

[a] All reactions were investigated by using 0.5 mmol of 7aA.

Next, we decided to test the scope of our protocol with MBH adducts 7aA–D; 7bA,C; 8aA,B; 8bB; 9aA–C; 9bA,B; 10aA–C; and 11aA,B generated from the corresponding aldehydes and the appropriate alkenes, and the results of this study are presented in Table 2.

Substrates originating from tryptophan (a series) were fast reacting compared to those originating from tryptamine (b series). MBH adducts 7-9 and 11 afforded the

Figure 2. Plausible mechanism for the FC reaction in MBH derivatives.

respective fused-β-carbolines 19–22. Whereas reactions of substrates 11aA,B incorporating a 3,4-methylenedioxy phenyl group were sluggish to afford products 22aA,B in more than 48 h of heating, substrates 10aA–C bearing only a 3-methoxy group in the phenyl ring yielded products 23aA–C. The yields of compounds belonging to series 23

Table 2. Results of the FC reaction of several MBH adducts.

were moderate only. Formation of **23**, however, could be explained on the basis of a reaction proceeding through route III (Figure 2).

Mechanistic considerations provided a basis to investigate the fate of substrate 24 originating from the MBH reaction between 7a and cyclohexene-2-one. It was found that the reaction of 24 with P_2O_5 under similar conditions resulted in the formation of product 25 in 91% yield (Scheme 4). The formation of 25 can again be explained by route III. In this case, due to the conjugation of the double bond with the keto group, the substrate becomes highly activated resulting in preferential attack of the lone pair of electrons on the nitrogen at this double bond.

Scheme 4. Reagents and conditions. (a) Cyclohex-2-enone, DABCO, r.t., 24 h; (b) P_2O_5 , dry CH_2Cl_2 , r.t., 5 h.

R^{3} R^{2} $R^{1} = R^{2}$ 8a,b: $R^{1} = R, F$ 9a,b: $R^{1} = R^{3}$ 10a: $R^{1} = R^{2}$ 11a: $R^{1} = H, F$	$= R^{3} = OMe$ $R^{2} = R^{3} = OMe$ $R^{2} = R^{3} = OMe$ $= OMe, R^{2} = H$ $= H, R^{3} = OMe$ $R^{2} = R^{3} = OCH_{2}O$	$\frac{\text{DABCO, r.:}}{4 \text{ h to } 12 \text{ c}}$ $\frac{4 \text{ h to } 12 \text{ c}}{83-88\%}$ no EWG A CN B CO ₂ Me C CO ₂ Me C CO ₂ Et D CO ₂ ⁿ Bn	R^{3} R^{1} R^{2} R^{2} R^{1} R^{2} R^{2	P ₂ O ₅ , dry N r.t. to r	r CH ₂ Cl ₂ reflux	R EWG R ¹ R ² R ³ 19–22	or N H ₃ CO 23	EWG
Reactant	R	\mathbb{R}^1	R ²	R ³	EWG	Time [h]	Product	Yield [%]
7aA	CO ₂ Me	OMe	OMe	OMe	CN	1	19aA	85
7aB	CO ₂ Me	OMe	OMe	OMe	CO ₂ Me	1	19aB	80
7aC	CO ₂ Me	OMe	OMe	OMe	CO_2Et	1	19aC	81
7aD	CO ₂ Me	OMe	OMe	OMe	$CO_2 nBu$	1	19aD	81
7bA	Ĥ	OMe	OMe	OMe	ČN	2	19bA	83
7bC	Н	OMe	OMe	OMe	CO ₂ Et	2	19bC	79
8aA	CO_2Me	Н	OMe	OMe	CÑ	3	20aA	85
8aB	CO_2Me	Н	OMe	OMe	CO ₂ Me	3	20aB	81
8bB	Ĥ	Н	OMe	OMe	CO_2Me	4	20bB	79
9aA	CO_2Me	OMe	Н	OMe	ĊŇ	3	21aA	81
9aB	CO_2Me	OMe	Н	OMe	CO ₂ Me	3	21aB	82
9aC	$\overline{CO_2Me}$	OMe	Н	OMe	CO_2Et	3	21aC	80
9bA	Ĥ	OMe	Н	OMe	ĊŇ	3	21bA	82
9bB	Н	OMe	Н	OMe	CO ₂ Me	4	21bB	78
11aA	CO_2Me	Н	OC	H ₂ O	ĊŇ	48	22aA	72
11aB	$\overline{\rm CO_2Me}$	Н	OC	H ₂ O	CO ₂ Me	96	22aB	78
10aA	$\overline{CO_2Me}$	Н	Н	OMe	ĊŇ	8	23aA	45
10aB	CO_2Me	Н	Н	OMe	CO ₂ Me	19	23aB	47
10aC	CO_2Me	Н	Н	OMe	CO_2Et	17	23aC	52

At this point of the study it was considered essential to investigate whether simple alcohols, which can be readily generated by the reduction of the formyl group, can participate in the FC alkylation under the influence of Lewis acids or P_2O_5 . Accordingly, **7a** was treated with NaBH₄ in MeOH to successfully afford corresponding alcohol **26** (Scheme 5). Subsequently, FC reaction of **26** with several Lewis acids [FeCl₃, In(OTf)₃, Sc(OTf)₃, ZnBr₂, BF₃·Et₂O] and P₂O₅ was investigated, but unfortunately the reaction was unsuccessful.

Scheme 5. Reagents and conditions (a) $NaBH_4$, MeOH, r.t., 20 min; (b) Lewis acid, CH_2Cl_2 , reflux, 24 h.

Conclusions

In summary, we have demonstrated a new application of substituted 1-formyl-9*H*- β -carboline for the synthesis of maxonine analogues. The pentacyclic products could be achieved either directly from the *N*-substituted aldehyde by an acid-catalyzed Pomeranz–Fritsch-type process or from MBH adducts by using a P₂O₅-catalyzed FC reaction. Although the process works only with activated arenes, it may be considered to be an efficient route to maxonine variants. Further work on developing a library of new maxonine-based compounds for bioevaluation is underway in our laboratory.

Experimental Section

General Methods: Melting points were determined in capillary tubes with a Precision melting point apparatus containing silicon oil. IR spectra were recorded by using a Perkin-Elmer's RX I FTIR spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded either with a Bruker DPX-200 or Bruker Avance DRX-300 FT spectrometer by using TMS as an internal standard. MS (ESI) were recorded with a Micromass Quadro-II LCMS system, whereas MS (EI) were recorded with a JEOL JMS600H mass spectrometer. HRMS (ESI) were recorded with an Agilent 6520 Q-TOF, LC-MS/ MS mass spectrometer. Elemental analyses were performed with a Carlo Erba 108 or an Elementar Vario EL III microanalyzer. The room temperature varied between 20 and 35 °C. All the solvents and chemicals were used as procured from the suppliers. Compounds 7bA, 8bB, and 9bA decomposed on standing so they were immediately subjected to reactions without any purification. Hence, the spectral characterization for these compounds was not performed. The spectroscopic data for compound 16 is of the crude product, as it disintegrated during purification.

General Procedure for the Synthesis of Compounds 2–6, as Exemplified by Compound 2a: To a stirred solution of compound 1a (0.30 g, 1 mmol) in dry DMF (3 mL) was added Cs_2CO_3 (0.46 g, 1.4 mmol) at room temperature. After 15 min, 3,4,5-trimethoxybenzyl bromide (0.36 g, 1.4 mmol) was added dropwise, and the reaction mixture was stirred for an additional 1 h at the same temperature. Upon completion of the reaction as monitored by TLC, the contents were poured into water (25 mL) whilst stirring with a glass rod. The resulting suspension was filtered, and the solid residue was washed with hexane (10 mL) and dried in a desiccator over P_2O_5 under vacuum to obtain **2a** (0.45 g, 94%) as a yellowish white solid.

Methyl 1-(Dimethoxymethyl)-9-(3,4,5-trimethoxybenzyl)-9*H*-βcarboline-3-carboxylate (2a): M.p. 101–102 °C; $R_f = 0.56$ (hexanes/ EtOAc, 60:40). IR (KBr): $\tilde{v} = 1718$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.41$ (s, 6 H, 2 OCH₃), 3.65 (s, 6 H, 2 OCH₃), 3.80 (s, 3 H, OCH₃), 4.06 (s, 3 H, CO₂CH₃), 5.74 (s, 1 H, CH), 6.04 (s, 2 H, NCH₂), 6.25 (s, 2 H, ArH), 7.34–7.38 (m, 2 H, ArH), 7.55 (t, J = 7.6 Hz, 1 H, ArH), 8.22 (d, J = 7.8 Hz, 1 H, ArH), 8.95 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta =$ 50.2, 52.7, 55.5, 56.0, 60.8, 103.2, 109.3, 111.6, 118.4, 121.1, 121.2, 121.7, 129.1, 131.2, 133.9, 135.7, 136.2, 136.8, 141.1, 142.8, 153.3, 166.4 ppm. MS (ESI+): m/z = 481.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₆H₂₉N₂O₇ [M + H]⁺ 481.1975; found 481.1978.

General Procedure for the Synthesis of 12,13, 15, and 16 By Using TFA and Water, as Exemplified by 12a: A mixture of 2a (0.48 g, 1 mmol), trifluoroacetic acid (7.5 mL), and water (0.07 mL) was stirred at room temperature for 48 h. After completion of the reaction as monitored by TLC, TFA was removed under reduced pressure. After neutralization with a saturated solution of NaHCO₃, the contents were extracted with ethyl acetate (2×20 mL). Then the pooled organic layer was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain a yellow oil as a crude product. The crude product was purified by column chromatography (silica gel hexanes/EtOAc, 70:30) to afford 12a (0.37 g, 85%) as a yellow solid.

Methyl 3,4,5-Trimethoxy-6-hydroxy-1,6-dihydro-7,13b-diazabenzo-[5,6]cyclohepta[1,2,3-*jk*]fluorene-8-carboxylate (12a): M.p. 132– 134 °C; $R_f = 0.47$ (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 1734$ (CO₂CH₃), 3286 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta =$ 3.83–3.90 (m, 12 H, 3 OCH₃ and CO₂CH₃), 4.02 (br. s, 1 H, OH), 5.25 (d, J = 13.8 Hz, 1 H, NCH*H*), 6.36 (d, J = 13.7 Hz, 1 H, NC*H*H), 6.76 (s, 1 H, CH), 6.81 (s, 1 H, ArH), 7.33–7.38 (m, 1 H, ArH), 7.68–7.70 (m, 2 H, ArH), 8.17 (d, J = 7.8 Hz, 1 H, ArH), 8.75 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃/[D₆]DMSO): $\delta = 46.8$, 51.6, 55.6, 60.2, 61.5, 69.0, 110.0, 110.3, 117.4, 120.0, 120.2, 121.4, 126.9, 128.2, 129.9, 135.0, 135.4, 140.5, 141.4, 145.1, 150.8, 152.4, 165.7 ppm. MS (ESI+): m/z = 435.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₄H₂₃N₂O₆ [M + H]⁺ 435.1556; found 435.1561.

3,4,5-Trimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta-[1,2,3-*jk***]fluoren-6-ol (12b):** Yield: 79%; white solid; m.p. 193–195 °C; $R_{\rm f} = 0.40$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 3428$ (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.84$ (s, 3 H, OCH₃), 3.87 (s, 3 H, OCH₃), 3.88 (s, 3 H, OCH₃), 5.24 (d, J = 13.8 Hz, 1 H, NCH*H*), 6.28 (d, J = 13.7 Hz, 1 H, NC*H*H), 6.68 (s, 1 H, CH), 6.76 (s, 1 H, ArH), 7.28–7.31 (m, 1 H, ArH), 7.64–7.66 (m, 2 H, ArH), 7.88 (d, J = 5.2 Hz, 1 H, ArH), 8.12 (d, J = 7.8 Hz, 1 H, ArH), 8.27 (d, J = 5.2 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃/[D₆]DMSO): $\delta = 47.1$, 55.7, 60.3, 61.6, 69.4, 108.9, 109.8, 114.3, 118.9, 120.1, 121.2, 127.2, 127.8, 128.5, 129.8, 133.5, 136.8, 140.0, 141.5, 145.1, 150.9, 152.3 ppm. MS (ESI+): m/z = 377.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₂H₂₁N₂O₄ [M + H]⁺ 377.1501; found 377.1496. Methyl 3,4-Dimethoxy-6-hydroxy-1,6-dihydro-7,13b-diazabenzo-[5,6]cyclohepta[1,2,3-*jk*]fluorene-8-carboxylate (13a): Yield: 88%; white solid; m.p. 205–207 °C; $R_f = 0.41$ (hexanes/EtOAc, 70:30). IR (KBr): $\tilde{v} = 1717$ (CO₂CH₃), 3415 (OH) cm^{-1.} ¹H NMR (300 MHz, CDCl₃/[D₆]DMSO): $\delta = 3.76$ (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 3.93 (s, 3 H, CO₂CH₃), 5.71 (d, J = 13.6 Hz, 1 H, NCHH), 5.98 (d, J = 13.8 Hz, 1 H, NCHH), 6.42 (s, 1 H, CH), 7.24 (s, 1 H, ArH), 7.30 (s, 1 H, ArH), 7.36 (t, J = 7.4 Hz, 1 H, ArH), 8.07 (d, J = 8.5 Hz, 1 H, ArH), 8.41 (d, J = 8.0 Hz, 1 H, ArH), 8.90 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 46.3$, 52.2, 55.8, 55.9, 79.2, 110.8, 114.6, 117.9, 120.3, 120.6, 122.3, 125.9, 128.2, 128.9, 133.7, 134.7, 135.2, 140.8, 145.2, 148.1, 148.2, 166.0 ppm. MS (ESI+): m/z = 405.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₃H₂₁N₂O₅ [M + H]⁺ 405.1450; found 405.1464.

3,4-Dimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta-[1,2,3-*jk*]**fluoren-6-ol (13b):** Yield: 81 %; white solid; m.p. 188–189 °C; $R_f = 0.43$ (hexanes/EtOAc, 70:30). IR (KBr): $\tilde{v} = 3373$ (OH) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): $\delta = 3.86$ (s, 3 H, OCH₃), 3.92 (s, 3 H, OCH₃), 5.32 (d, J = 14.6 Hz, 1 H, NCH*H*), 5.72 (d, J = 14.5 Hz, 1 H, NC*H*H), 6.69 (s, 1 H, CH), 6.89 (s, 1 H, ArH), 7.28–7.31 (m, 1 H, ArH), 7.49 (s, 1 H, ArH), 7.63–7.65 (m, 2 H, ArH), 7.84 (d, J = 5.1 Hz, 1 H, ArH), 8.10 (d, J = 7.9 Hz, 1 H, ArH), 8.27 (d, J = 5.4 Hz, 1 H, ArH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 45.2$, 54.4, 54.6, 108.3, 108.9, 111.1, 112.7, 113.2, 118.1, 118.7, 120.4, 123.8, 126.9, 128.0, 131.5, 133.3, 134.8, 138.9, 142.9, 146.4, 147.1 ppm. MS (ESI+): m/z = 347.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₁H₁₉N₂O₃ [M + H]⁺ 347.1396; found 347.1413.

Methyl 3,5-Dimethoxy-6-hydroxy-1,6-dihydro-7,13b-diazabenzo-[5,6]cyclohepta[1,2,3-*jk*]fluorene-8-carboxylate (14a): Yield: 91%; white solid; m.p. 234–236 °C; $R_f = 0.41$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1722$ (CO₂CH₃), 3426 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.20$ (br. s, 1 H, CHO*H*), 3.80 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 4.00 (s, 3 H, CO₂CH₃), 5.24 (d, J = 13.7 Hz, 1 H, NCH*H*), 6.30 (d, J = 13.8 Hz, 1 H, NC*H*H), 6.43 (d, J = 2.2 Hz, 1 H, ArH), 6.55 (d, J = 2.3 Hz, 1 H, ArH), 6.88 (s, 1 H, CHOH), 7.32–7.37 (m, 1 H, ArH), 7.67–7.69 (m, 2 H, ArH), 8.17 (d, J = 7.9 Hz, 1 H, ArH), 8.82 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃/[D₆]DMSO): $\delta = 45.3$, 50.4, 53.7, 54.3, 66.2, 96.4, 106.0, 108.9, 116.0, 118.6, 118.8, 119.5, 120.4, 126.6, 127.1, 133.7, 134.8, 139.0, 143.9, 155.6, 158.4, 164.4 ppm. MS (ESI+): m/z = 405.0 [M + H]⁺. HRMS (ESI): calcd. for C₂₃H₂₁N₂O₅ [M + H]⁺ 405.1450; found 405.1455.

3,5-Dimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta-[1,2,3-*jk*]**fluoren-6-ol (14b):** Yield: 88 %; white solid; m.p. 200–202 °C; $R_f = 0.52$ (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 3321$ (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.80$ (s, 3 H, OCH₃), 3.81 (s, 3 H, OCH₃), 5.22 (d, J = 13.7 Hz, 1 H, NC*H*H), 6.27 (d, J = 13.7 Hz, 1 H, NCH*H*), 6.43 (d, J = 2.2 Hz, 1 H, ArH), 6.56 (d, J = 2.3 Hz, 1 H, ArH), 6.77 (s, 1 H, CH), 7.27–7.30 (m, 1 H, ArH), 7.60–7.64 (m, 2 H, ArH), 7.88 (d, J = 5.3 Hz, 1 H, ArH), 8.11 (d, J = 7.8 Hz, 1 H, ArH), 8.29 (d, J = 5.3 Hz, 1 H, ArH), 96.8, 106.3, 108.3, 113.4, 118.2, 119.2, 120.4, 120.8, 126.9, 127.4, 132.8, 135.4, 136.0, 139.1, 144.8, 156.3, 159.0 ppm. MS (ESI+): *m/z* = 347.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₁H₁₉N₂O₃ [M + H]⁺ 347.1396; found 347.1409.

Methyl 6-Hydroxy-3-methoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluorene-8-carboxylate (15a): Yield: 83%; white solid; m.p. 185–187 °C; $R_f = 0.45$ (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 1709$ (CO₂CH₃), 3341 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 3.78 (s, 3 H, OCH₃), 4.02 (s, 3 H, CO₂CH₃), 5.50 (d, J = 14.2 Hz, 1 H, NC*H*H), 5.67 (d, J = 14.4 Hz, 1 H, NC*H*H), 6.61 (s, 1 H, CH), 6.88–7.00 (m, 2 H, ArH), 7.35–7.38 (m, 1 H, ArH), 7.66–7.80 (m, 3 H, ArH), 8.14 (d, J = 7.7 Hz, 1 H, ArH), 8.74 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 47.9, 52.6, 55.5, 74.1, 109.5, 113.3, 116.1, 118.0, 120.8, 121.0, 121.9, 122.2, 128.5, 129.0, 132.9, 133.5, 134.7, 141.0, 143.5, 159.3, 163.5, 166.2 ppm. MS (ESI+): m/z = 375.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₂H₁₉N₂O₄ [M + H]⁺ 375.1345; found 375.1357.

3-Methoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]-**fluoren-6-ol (15b):** Yield: 81%; white solid; m.p. 182–184 °C; $R_{\rm f}$ = 0.44 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 3451 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 3.77 (s, 3 H, OCH₃), 5.37 (d, J = 14.4 Hz, 1 H, NC*H*H), 5.70 (d, J = 14.4 Hz, 1 H, NC*H*H), 6.66 (s, 1 H, CH), 6.88–6.93 (m, 2 H, ArH), 7.28–7.30 (m, 1 H, ArH), 7.62–7.66 (m, 2 H, ArH), 7.78–7.84 (m, 2 H, ArH), 8.09 (d, J = 7.8 Hz, 1 H, ArH), 8.27 (d, J = 5.3 Hz, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 47.8, 55.5, 70.1, 109.1, 113.2, 114.7, 115.9, 119.8, 120.8, 122.1, 126.5, 128.4, 133.0, 134.4, 136.4, 140.5, 143.4, 159.1 ppm. MS (ESI+): *m/z* = 317.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₀H₁₇N₂O₂ [M + H]⁺ 317.1290; found 317.1293.

Methyl 8-Hydroxy-8,14-dihydro-10,12-dioxa-7,14a-diazaindeno-[5',6':5,6]cyclohepta[1,2,3-*jk*]fluorine-6-carboxylate (16a): Yield: 82%; white solid; m.p. >250 °C; $R_f = 0.42$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1703$ (CO₂CH₃), 3472 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃/[D₆]DMSO): $\delta = 3.93$ (s, 3 H, CO₂CH₃), 5.69 (d, J = 14.5 Hz, 1 H, CH), 5.95 (s, 2 H, NCH₂), 6.01 (s, 2 H, OCH₂O), 7.23 (s, 1 H, ArH), 7.28 (s, 1 H, ArH), 7.36 (t, J = 7.1 Hz, 1 H, ArH), 7.72 (t, J = 7.5 Hz, 1 H, ArH), 8.06 (d, J = 7.6 Hz, 1 H, ArH), 8.41–8.47 (m, 1 H, ArH), 8.91 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): insoluble. MS (ESI+): m/z = 389.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₂H₁₇N₂O₅ [M + H]⁺ 389.1137; found 389.1132.

8,14-Dihydro-10,12-dioxa-7,14a-diazaindeno[5',6':5,6]cyclohepta-[**1,2,3-***jk*]**fluoren-8-ol (16b):** Yield: 65%; brown solid; m.p. >250 °C; $R_{\rm f}$ = 0.46 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 3443 (OH) cm⁻¹. ¹H NMR (300 MHz, CDCl₃/[D₆]DMSO): δ = 5.54–5.63 (m, 1 H, NHH), 5.79 (br. s, 1 H, NHH), 5.94 (s, 2 H, OCH₂O), 6.23 (s, 1 H, CHOH), 6.93 (s, 1 H, CHOH), 7.13 (s, 1 H, ArH), 7.15 (s, 1 H, ArH), 7.26 (t, *J* = 7.7 Hz, 1 H, ArH), 7.63 (t, *J* = 7.7 Hz, 1 H, ArH), 7.86 (d, *J* = 8.2 Hz, 1 H, ArH), 7.94 (d, *J* = 2.0 Hz, 1 H, ArH), 8.14 (d, *J* = 7.7 Hz, 1 H, ArH), 8.26 (d, *J* = 5.1 Hz, 1 H, ArH) ppm. MS (EI+): m/z = 330 [M]⁺.

General Procedure for the Friedel–Crafts Reaction by using P_2O_5 as a Catalyst, as Exemplified by 19aA: To a stirred solution of 7aA (0.49 g, 1.0 mmol) in dry dichloromethane (30 mL) in a round-bottomed flask was added P_2O_5 (0.2 g) at room temperature, and the reaction was continued for 1 h. Upon completion (TLC) of the reaction, the reaction mixture was poured into water and neutralized with a saturated solution of NaHCO₃. The contents were extracted with dichloromethane (2 × 30 mL). The combined organic layer was dried (Na₂SO₄) and concentrated to obtain a yellow residue, which was purified by column chromatography (silica gel; hexanes/ EtOAc, 82:18) to furnish **19aA** (0.40 g, 85%) as a white solid.

2-(3,4,5-Trimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk***]fluoren-6-yl)acrylonitrile (19aA): White solid; m.p. 204–206 °C; R_f = 0.48 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 1718 (CO₂CH₃), 2226 (CN) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): \delta = 3.84 (s, 3 H, OCH₃), 3.88 (s, 3 H, OCH₃), 4.04 (s, 3 H, OCH₃), 4.06 (s, 3 H, CO₂CH₃), 5.20–5.25 (m, 2 H, NC***H***H and CH), 5.62 (d, J = 14.6 Hz, 1 H, NCH***H***), 6.11–6.18 (m, 2 H, =CH₂), 6.71 (s, 1 H, ArH), 7.35–7.41 (m, 1 H, ArH),**

7.64–7.73 (m, 2 H, ArH), 8.19 (d, J = 7.8 Hz, 1 H, ArH), 8.85 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 47.3$, 47.5, 52.9, 56.2, 60.9, 61.9, 109.5, 109.7, 117.6, 118.1, 121.0, 121.2, 122.3, 123.1, 125.6, 129.2, 129.4, 129.7, 131.8, 136.3, 137.7, 140.4, 141.0, 143.0, 152.8, 153.5, 166.6 ppm. MS (ESI+): m/z = 470.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₄N₃O₅ [M + H]⁺ 470.1716; found 470.1728.

Methyl 2-(3,4,5-Trimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13bdiazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluoren-6-yl)acrylate (19aB): White solid; m.p. 215–216 °C; $R_f = 0.45$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1722$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.65$ (s, 3 H, OCH₃), 3.83 (s, 6 H, 2 OCH₃), 4.01 (s, 3 H, CO₂CH₃), 4.05 (s, 3 H, CO₂CH₃), 4.86 (d, J = 2.2 Hz, 1 H, CH), 5.12 (d, J = 14.6 Hz, 1 H, NCH*H*), 5.77 (d, J = 14.5 Hz, 1 H, NC*H*H), 6.29–6.31 (m, 2 H, =CH₂), 6.59 (s, 1 H, ArH), 7.33–7.38 (m, 1 H, ArH), 7.61–7.70 (m, 2 H, ArH), 8.19 (d, J = 7.8 Hz, 1 H, ArH), 8.83 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 46.1, 47.4, 51.9, 52.8, 56.0, 60.8, 61.6, 109.0, 109.5, 117.7, 120.6, 121.2, 122.1, 125.6, 126.9, 128.7, 129.3, 136.5, 137.4, 140.9, 142.2, 142.7, 143.2, 152.6, 152.9, 166.6, 166.9 ppm. MS (ESI+): m/z =503.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₈H₂₇N₂O₇ [M + H]⁺ 503.1818; found 503.1821.

Ethyl 2-(3,4,5-Trimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-jk]fluoren-6-yl)acrylate (19aC): White solid; m.p. 170–171 °C; $R_f = 0.51$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1715$ (CO₂CH₃ and CO₂C₂H₅) cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 1.65 \text{ (t, } J = 7.1 \text{ Hz}, 3 \text{ H}, \text{ CO}_2\text{CH}_2\text{CH}_3)$, 3.83 (s, 3 H, OCH₃), 3.84 (s, 3 H, OCH₃), 3.98 (s, 3 H, OCH₃), $4.09-4.14 \text{ (m, 5 H, CO}_2\text{CH}_3 \text{ and CO}_2\text{CH}_2\text{CH}_3), 4.83 \text{ (d, } J = 1.9 \text{ Hz},$ 1 H, CH), 5.12 (d, *J* = 14.6 Hz, 1 H, NC*H*H), 5.79 (d, *J* = 14.5 Hz, 1 H, NCHH), 6.28 (s, 2 H, =CH₂), 6.59 (s, 1 H, ArH), 7.36 (t, J = 6.6 Hz, 1 H, ArH), 7.61–7.70 (m, 2 H, ArH), 8.18 (d, J = 7.7 Hz, 1 H, ArH), 8.83 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2, 46.2, 47.5, 52.8, 56.1, 60.8, 61.7, 109.1, 109.5, 117.7, 120.7,$ 121.3, 122.2, 126.0, 126.5, 128.8, 129.4, 136.6, 137.5, 141.0, 142.7, 142.8, 143.4, 152.7, 152.9, 166.4, 167.0 ppm. MS (ESI+): m/z =517.2 [M + H]⁺. HRMS (ESI): calcd. for $C_{29}H_{29}F_6N_2O_7$ [M + H]⁺ 517.1975; found 517.1971.

Butyl 2-(3,4,5-Trimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-jk]fluoren-6-yl)acrylate (19aD): White solid; m.p. 155–156 °C; $R_{\rm f} = 0.53$ (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 1718$ (CO₂CH₃ and CO₂C₄H₉) cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 0.88 \text{ (t, } J = 7.3 \text{ Hz}, 3 \text{ H},$ CO₂CH₂CH₂CH₂CH₃), 1.26–1.34 (m, 2 H, CO₂CH₂CH₂CH₂CH₃), 1.48–1.55 (m, 2 H, CO₂CH₂CH₂CH₂CH₃), 3.82 (s, 3 H, OCH₃), 3.84 (s, 3 H, OCH₃), 3.99 (s, 3 H, OCH₃), 4.03–4.07 (m, 5 H, CO₂CH₂CH₂CH₂CH₃ and CO₂CH₃), 4.83 (s, 1 H, CH), 5.12 (d, J = 14.5 Hz, 1 H, NCHH), 5.79 (d, J = 14.6 Hz, 1 H, NCHH), 6.27 (s, 2 H, =CH₂), 6.59 (s, 1 H, ArH), 7.35 (t, *J* = 6.5 Hz, 1 H, ArH), 7.61-7.70 (m, 2 H, ArH), 8.19 (d, J = 7.8 Hz, 1 H, ArH), 8.83 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 13.8, 19.2, 29.8 52.9, 56.1, 60.8, 61.7, 64.9, 109.0, 109.6, 117.7, 120.7, 121.3, 122.2, 125.7, 126.0, 126.6, 128.8, 129.3, 136.6, 137.4, 141.0, 142.6, 142.8, 143.5, 152.7, 152.9, 166.4, 167.0 ppm. MS (ESI+): m/z = 545.2 [M + H]⁺. HRMS (ESI): calcd. for $C_{31}H_{33}N_2O_7$ [M + H]⁺ 545.2288; found 545.2293.

2-(3,4,5-Trimethyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta-[1,2,3-*jk*]**fluoren-6-yl)acrylonitrile (19bA):** White solid; m.p. 134–136 °C; $R_{\rm f}$ = 0.52 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 2225 (CN) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): δ = 3.86 (s, 3 H, OCH₃), 3.88 (s, 3 H, OCH₃), 4.01 (s, 3 H, OCH₃), 5.17–5.26 (m, 2 H, CH and NCHH), 5.59 (d, J = 14.6 Hz, 1 H, NCHH), 6.00 (d, J = 14.6 Hz, 1 H, NCHH), 6.00 (d, J = 14.6 Hz, 1 H, NCHH), 6.00 (d, J = 14.6 Hz, 1 H, NCHH). 2.5 Hz, 1 H, =C*H*H), 6.10 (d, J = 2.7 Hz, 1 H, =CH*H*), 6.72 (s, 1 H, ArH), 7.26–7.33 (m, 1 H, ArH), 7.59–7.68 (m, 2 H, ArH), 7.91 (d, J = 5.2 Hz, 1 H, ArH), 8.14 (d, J = 7.8 Hz, 1 H, ArH), 8.41 (d, J = 5.2 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 47.3$, 47.4, 56.2, 60.9, 61.9, 109.1, 109.8, 114.8, 117.7, 119.9, 120.8, 122.1, 123.5, 125.9, 128.6, 129.5, 130.0, 131.6, 134.8, 138.9, 140.4, 140.6, 142.8, 152.6, 153.4 ppm. MS (ESI+): m/z = 412.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₅H₂₂N₃O₃ [M + H]⁺ 412.1661; found 412.1665.

Ethyl 2-(3,4,5-Trimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-jk]fluoren-6-yl]acrylate (19bC): White solid; m.p. 162–164 °C; $R_{\rm f} = 0.53$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1716$ $(CO_2C_2H_5)$ cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 1.17 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 3.83 (s, 3 H, OCH₃), 3.85 (s, 3 H, OCH₃), 3.96 (s, 3 H, OCH₃), 4.08–4.16 (m, 2 H, CO₂CH₂CH₃), 4.86 (d, *J* = 2.1 Hz, 1 H, CH), 5.10 (d, *J* = 14.5 Hz, 1 H, NCHH), 5.75 (d, J = 14.4 Hz, 1 H, NCHH), 6.13 (t, J = 2.2 Hz, 1 H, =CHH), 6.27 (d, J = 2.1 Hz, 1 H, =CHH), 6.60 (s, 1 H, ArH), 7.26–7.30 (m, 1 H, ArH), 7.56–7.65 (m, 2 H, ArH), 7.87 (d, J =5.3 Hz, 1 H, ArH), 8.13 (d, J = 7.8 Hz, 1 H, ArH), 8.38 (d, J =5.3 Hz, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 14.0, 46.0, 47.2, 53.5, 56.0, 60.8, 61.6, 109.0, 109.1, 114.1, 119.5, 120.8, 121.9, 126.1, 126.2, 128.2, 128.7, 129.5, 134.8, 138.6, 140.4, 142.5, 142.9, 143.4, 152.4, 152.6, 166.4 ppm. MS (ESI+): m/z = 459.2 [M + H]⁺. HRMS (ESI): calcd. for $C_{27}H_{27}N_2O_5$ [M + H]⁺ 459.1920; found 459.1930.

2-(3,4-Dimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk***]fluoren-6-yl)acrylonitrile (20aA): White solid; m.p. 213-215 °C; R_f = 0.46 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 1726 (CO₂CH₃), 2216 (CN) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): \delta = 3.89 (s, 3 H, OCH₃), 3.92 (s, 3 H, OCH₃), 4.07 (s, 3 H, CO₂CH₃), 5.23–5.34 (m, 3 H, CH, =CHH and NCH***H***), 5.60 (d,** *J* **= 14.8 Hz, 1 H, NC***H***H), 6.11 (d,** *J* **= 2.5 Hz, 1 H, =C***H***H), 6.90 (s, 1 H, ArH), 7.07 (s, 1 H, ArH), 7.39 (t,** *J* **= 6.4 Hz, 1 H, ArH), 7.66–7.74 (m, 2 H, ArH), 8.21 (d,** *J* **= 7.8 Hz, 1 H, ArH), 8.86 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): \delta = 47.2, 53.0, 56.19, 56.24, 56.8, 109.6, 114.0, 115.0, 117.3, 118.2, 121.0, 122.3, 125.0, 126.0, 129.0, 129.2, 129.6, 132.0, 136.1, 137.2, 140.2, 141.1, 149.0, 149.5, 166.5 ppm. MS (ESI+):** *m/z* **= 440.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₆H₂₂N₃O₄ [M + H]⁺ 440.1610; found 440.1601.**

Methyl 2-(3,4-Dimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluoren-6-yl)acrylate (20aB): White solid; m.p. 198–200 °C; $R_f = 0.46$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1719$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 3.69 (s, 3 H, OCH₃), 3.85 (s, 3 H, OCH₃), 3.91 (s, 3 H, CO₂CH₃), 4.06 (s, 3 H, CO₂CH₃), 4.92 (d, J = 1.6 Hz, 1 H, CH), 5.18 (d, J =14.6 Hz, 1 H, NCH*H*), 5.66–5.73 (m, 2 H, =C*H*H and NC*H*H), 6.30 (d, J = 1.3 Hz, 1 H, =CH*H*), 6.78 (s, 1 H, ArH), 7.21 (s, 1 H, ArH), 7.33–7.38 (m, 1 H, ArH), 7.66 (br. s, 2 H, ArH), 8.19 (d, J =7.8 Hz, 1 H, ArH), 8.84 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 46.8$, 51.9, 52.8, 55.3, 56.1, 109.6, 113.2, 116.3, 117.7, 120.7, 121.1, 122.1, 126.1, 128.8, 130.6, 136.6, 137.2, 141.0, 141.6, 142.7, 148.1, 148.8, 166.4, 166.7 ppm. MS (ESI+): m/z = 473.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₅N₂O₆ [M + H]⁺ 473.1713; found 473.1716.

Methyl 2-(3,4-Dimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluoren-6-yl)acrylate (20bB): White solid; m.p. 185–187 °C; $R_f = 0.54$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1714$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.71$ (s, 3 H, OCH₃), 3.85 (s, 3 H, OCH₃), 3.91 (s, 3 H, CO₂CH₃), 4.98 (d, J =1.6 Hz, 1 H, CH), 5.14 (d, J = 14.5 Hz, 1 H, NCH*H*), 5.51 (s, 1 H, =C*H*H), 5.67 (d, *J* = 14.5 Hz, 1 H, NCH*H*), 6.30 (d, *J* = 1.1 Hz, 1 H, =CH*H*), 6.78 (s, 1 H, ArH), 7.16 (s, 1 H, ArH), 7.29–7.32 (m, 1 H, ArH), 7.60–7.67 (m, 2 H, ArH), 7.90 (d, *J* = 5.3 Hz, 1 H, ArH), 8.14 (d, *J* = 7.8 Hz, 1 H, ArH), 8.38 (d, *J* = 5.3 Hz, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 46.7, 52.0, 55.7, 56.2, 109.1, 113.4, 114.3, 116.3, 119.7, 120.9, 122.0, 126.0, 126.5, 128.4, 129.1, 131.0, 135.1, 138.7, 140.5, 142.2, 142.7, 148.2, 148.8, 166.7 ppm. MS (ESI+): *m/z* = 415.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₅H₂₃N₂O₄ [M + H]⁺ 415.1658; found 415.1653.

2-(3,5-Dimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk***]fluoren-6-yl)acrylonitrile (21aA): White solid; m.p. 140–142 °C; R_f = 0.42 (hexanes/EtOAc, 60:40). IR (KBr): \tilde{v} = 1721 (CO₂CH₃), 2223 (CN) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): \delta = 3.83 (s, 3 H, OCH₃), 3.92 (s, 3 H, OCH₃), 4.08 (s, 3 H, CO₂CH₃), 5.22–5.27 (m, 2 H, NC***H***H and C***H***OH), 5.63 (d, J = 14.7 Hz, 1 H, NCH***H***), 6.08 (d, J = 2.8 Hz, 1 H, =***CH***H), 6.30 (t, J = 2.6 Hz, 1 H, =***C***H***H***), 6.56 (d, J = 1.2 Hz, 2 H, ArH), 7.36–7.42 (m, 1 H, ArH), 7.66–7.74 (m, 2 H, ArH), 8.21 (d, J = 7.8 Hz, 1 H, ArH), 8.86 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 45.3, 46.2, 52.1, 55.3, 56.3, 98.8, 107.9, 110.7, 116.5, 117.4, 117.8, 120.2, 120.7, 122.4, 123.9, 128.6, 128.9, 132.8, 135.8, 136.5, 139.9, 140.7, 158.1, 160.2, 165.7 ppm. MS (ESI+): m/z = 440.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₆H₂₂N₃O₄ [M + H]⁺ 440.1610; found 440.1599.**

Methyl 2-(3,5-Dimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-jk]fluoren-6-yl)acrylate (21aB): White solid; m.p. 209–211 °C; $R_f = 0.42$ (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 1719$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 3.62 (s, 3 H, OCH₃), 3.77 (s, 3 H, OCH₃), 3.91 (s, 3 H, CO₂CH₃), 4.05 (s, 3 H, CO₂CH₃), 4.84 (d, J = 2.2 Hz, 1 H, CHOH), 5.13 (d, J = 14.5 Hz, 1 H, NCHH), 5.77 (d, J = 14.4 Hz, 1 H, NCHH), 6.27 (d, J = 2.2 Hz, 1 H, =CHH), 6.39–6.42 (m, 2 H, =CHH and ArH), 6.48 (d, J = 2.3 Hz, 1 H, ArH), 7.32–7.37 (m, 1 H, ArH), 7.61–7.69 (m, 2 H, ArH), 8.18 (d, J = 7.8 Hz, 1 H, ArH), 8.82 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 44.9$, 47.5, 51.8, 52.7, 55.3, 56.3, 98.9, 106.6, 109.5, 117.6, 120.2, 120.6, 121.2, 122.1, 126.4, 128. 7, 135.6, 136.8, 137.3, 140.9, 142.7, 143.3, 159.1, 159.7, 166.7, 166.9 ppm. MS (ESI+): m/z = 473.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₅N₂O₆ [M + H]⁺ 473.1713; found 473.1716.

Ethyl 2-(3,5-Dimethoxy-8-methoxycarbonyl-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-jk]fluoren-6-yl)acrylate (21aC): White solid; m.p. 229–231 °C; $R_f = 0.44$ (hexanes/EtOAc, 70:30). IR (KBr): $\tilde{v} = 1716$ (CO₂CH₃ and CO₂C₂H₅) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7.1 Hz, 3 H, COCH₂CH₃), 3.77 (s, 3 H, OCH₃), 3.89 (s, 3 H, OCH₃), 4.05–4.10 (m, 5 H, CO_2CH_3 and $CO_2CH_2CH_3$), 4.79 (d, J = 2.1 Hz, 1 H, CH), 5.13 (d, *J* = 14.5 Hz, 1 H, NC*H*H), 5.79 (d, *J* = 14.5 Hz, 1 H, NCH*H*), 6.27 (d, J = 2.1 Hz, 1 H, =CHH), 6.37–6.46 (m, 3 H, =CHH and ArH), 7.32-7.37 (m, 1 H, ArH), 7.61-7.69 (m, 2 H, ArH), 8.18 (d, J = 7.8 Hz, 1 H, ArH), 8.82 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 14.0, 44.8, 47.6, 52.7, 55.3, 56.0, 60.7, 98.7, 106.4,$ 109.5, 117.6, 120.2, 120.6, 121.2, 122.0, 126.2, 128.6, 135.6, 137.2, 140.9, 143.0, 143.5, 159.1, 159.8, 166.5 ppm. MS (ESI+): m/z =487.2 $[M + H]^+$. HRMS (ESI): calcd. for $C_{28}H_{27}N_2O_6$ $[M + H]^+$ 487.1869; found 487.1875.

2-(3,5-Dimethyl-1,6-dihydro-7,13b-diazabenzo[**5,6**]cyclohepta-[**1,2,3-***jk*]fluoren-6-yl)acrylonitrile (21bA): White solid; m.p. 183– 185 °C; $R_f = 0.41$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 2224$ (CN) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.81$ (s, 3 H, OCH₃), 3.90 (s, 3 H, OCH₃), 5.17–5.25 (m, 2 H, NCHH and CHOH), 5.58 (d, J = 14.6 Hz, 1 H, NCH*H*), 6.06 (d, J = 2.6 Hz, 1 H, =C*H*H), 6.12 (d, J = 2.4 Hz, 1 H, =CH*H*), 6.54 (d, J = 3.0 Hz, 2 H, ArH), 7.26–7.32 (m, 1 H, ArH), 7.58–7.67 (m, 2 H, ArH), 7.90 (d, J = 5.2 Hz, 1 H, ArH), 8.13 (d, J = 7.8 Hz, 1 H, ArH), 8.41 (d, J = 5.2 Hz, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 46.0$, 47.6, 55.5, 56.3, 98.7, 107.4, 109.1, 114.7, 117.7, 117.9, 119.8, 120.8, 122.1, 126.3, 128.6, 129.4, 131.1, 135.0, 136.3, 138.8, 140.5, 140.8, 158.8, 160.6 ppm. MS (ESI+): m/z = 382.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₄H₂₀N₃O₂ [M + H]⁺ 382.1556; found 382.1557.

Methyl 2-(3,5-Dimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluoren-6-yl)acrylate (21bB): White solid; m.p. 187–189 °C; $R_f = 0.42$ (hexanes/EtOAc, 70:30). IR (KBr): $\tilde{v} = 1710$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.64$ (s, 3 H, OCH₃), 3.77 (s, 3 H, OCH₃), 3.91 (s, 3 H, CO₂CH₃), 4.88 (d, J =1.7 Hz, 1 H, CHOH), 5.10 (d, J = 14.5 Hz, 1 H, NCHH), 5.74 (d, J = 14.2 Hz, 1 H, NCHH), 6.26 (br. s, 2 H, =CH₂), 6.43 (s, 1 H, ArH), 6.49 (d, J = 2.3 Hz, 1 H, ArH), 7.26–7.29 (m, 1 H, ArH), 7.56–7.62 (m, 2 H, ArH), 7.86 (d, J = 5.3 Hz, 1 H, ArH), 8.12 (d, J = 7.9 Hz, 1 H, ArH), 8.38 (d, J = 5.3 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 44.9$, 47.5, 51.9, 55.4, 56.4, 98.9, 106.7, 109.1, 114.1, 119.6, 120.6, 121.0, 126.2, 128.2, 128.8, 135.2, 135.9, 138.7, 140.5, 143.2, 143.5, 159.0, 159.7, 167.0 ppm. MS (ESI+): m/z = 415.3 [M + H]⁺. HRMS (ESI): calcd. for C₂₅H₂₃N₂O₄ [M + H]⁺ 415.1658; found 415.1661.

2-(6-Carboxymethyl-8,14-dihydro-10,12-dioxa-7,14a-diazaindeno-[5',6':5,6]cyclohepta[1,2,3-*jk*]**fluorine-8-yl)acrylonitrile (22aA):** White solid; m.p. 203–205 °C; $R_{\rm f} = 0.43$ (hexanes/EtOAc, 60:40). IR (KBr): $\tilde{v} = 1713$ (CO₂CH₃), 2225 (CN) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 4.07$ (s, 3 H, CO₂CH₃), 5.18–5.23 (m, 2 H, CH and NCH*H*), 5.32 (s, 1 H, =CH*H*), 5.56 (d, *J* = 14.8 Hz, 1 H, NC*H*H), 5.95 (s, 1 H, =C*H*H), 6.01 (d, *J* = 1.0 Hz, 1 H, OCH*H*O), 6.12 (d, *J* = 2.5 Hz, 1 H, OC*H*HO), 6.89 (s, 1 H ArH), 7.04 (s, 1 H, ArH), 7.38 (t, *J* = 6.9 Hz, 1 H, ArH), 7.62–7.73 (m, 2 H, ArH), 8.20 (d, *J* = 7.9 Hz, 1 H, ArH), 8.86 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 47.0$, 53.1, 56.9, 101.8, 109.5, 110.9, 112.1, 117.2, 118.3, 121.2, 122.3, 125.1, 127.4, 129.3, 130.4, 132.1, 136.1, 137.5, 140.0, 141.0, 148.5, 166.6 ppm. MS (ESI+): m/z = 424.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₅H₁₈N₃O₄ [M + H]⁺ 424.1297; found 424.1294.

Methyl 2-(6-Carboxymethyl-8,14-dihydro-10,12-dioxa-7,14a-diazaindeno[5',6':5,6]cyclohepta[1,2,3-*jk*]fluorine-8-yl)acrylate (22aB): White solid; m.p. 164–165 °C; $R_f = 0.49$ (hexanes/EtOAc, 70:30). IR (KBr): $\tilde{v} = 1717$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.45$ (d, J = 14.8 Hz, 1 H, NC*H*H), 3.75 (s, 1 H, CH), 3.79 (s, 3 H, CO₂CH₃), 4.07 (s, 3 H, CO₂CH₃), 4.76 (d, J = 16.0 Hz, 1 H, NCH*H*), 5.99 (s, 2 H, OCH₂O), 6.41 (d, J = 15.4 Hz, 1 H, =CH*H*), 6.80 (s, 1 H, =C*H*H), 7.02 (s, 1 H, ArH), 7.38 (t, J = 7.0 Hz, 1 H, ArH), 7.51 (d, J = 8.4 Hz, 1 H, ArH), 7.61 (t, J = 7.5 Hz, 1 H, ArH), 8.20 (d, J = 7.6 Hz, 1 H, ArH), 8.28 (s, 1 H, ArH), 8.82 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 46.8$, 52.1, 52.9, 55.5, 101.5, 109.5, 110.2, 113.5, 117.8, 120.8, 121.2, 122.2, 126.6, 127.3, 129.0, 132.1, 136.6, 137.4, 141.0, 141.6, 142.5, 147.1, 147.8, 166.4, 166.8 ppm. MS (ESI+): m/z = 457.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₆H₂₁N₂O₆ [M + H]⁺ 457.1400; found 457.1397.

Methyl 2-Cyano-11-(3-methoxybenzyl)-11*H***-indolizino[8,7-b]indole-5-carboxylate (23aA):** Yellow solid; m.p. 207–208 °C; $R_f = 0.39$ (hexanes/EtOAc, 90:10). IR (KBr): $\tilde{v} = 1709$ (CO₂CH₃), 2230 (CN) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): $\delta = 3.71$ (s, 3 H, OCH₃), 4.03 (s, 3 H, CO₂CH₃), 5.68 (s, 2 H, NCH₂), 6.60 (s, 1 H, ArH), 6.67 (d, J = 7.2 Hz, 1 H, ArH), 6.80 (d, J = 6.7 Hz, 1 H, ArH), 6.92 (s, 1 H, ArH), 7.20–7.26 (m, 1 H, ArH), 7.38–7.43 (m, 3 H, ArH), 8.00 (d, J = 7.4 Hz, 1 H, ArH), 8.45 (s, 1 H, ArH), 9.33 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 48.2$, 52.6, 55.9, 97.0, 102.2, 110.0, 110.1, 116.4, 116.6, 117.8, 119.5, 122.0, 123.3, 125.4, 125.9, 129.3, 135.8, 140.0, 160.2, 162.9 ppm. MS (ESI+): m/z= 410.2 [M + H]⁺. HRMS (ESI): calcd. for C₂₅H₂₀N₃O₃ [M + H]⁺ 410.1505; found 410.1511.

Dimethyl 11-(3-Methoxybenzyl)-11*H***-indolizino**[8,7-*b*]**indole-2,5-di-carboxylate (23aB):** Yellow solid; m.p. 211–212 °C; $R_{\rm f} = 0.41$ (hexanes/EtOAc, 90:10). IR (KBr): $\tilde{v} = 1717$ (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDC1₃): $\delta = 3.70$ (s, 3 H, OCH₃), 3.88 (s, 3 H, CO₂CH₃), 4.03 (s, 3 H, CO₂CH₃), 5.75 (s, 2 H, NCH₂), 6.67–6.78 (m, 3 H, ArH), 7.16–7.21 (m, 2 H, ArH), 7.26–7.39 (m, 3 H, ArH), 7.98 (d, J = 7.0 Hz, 1 H, ArH), 8.42 (s, 1 H, ArH), 9.40 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 48.3$, 51.6, 52.3, 55.3, 100.7, 109.3, 110.1, 112.4, 112.8, 116.5, 118.1, 118.5, 119.1, 119.3, 121.6, 121.7, 123.7, 124.2, 124.8, 130.3, 134.1, 137.9, 139.9, 160.3, 163.2, 165.5 ppm. MS (ESI+): m/z = 443.1 [M + H]⁺. HRMS (ESI): calcd. for C₂₆H₂₃N₂O₅ [M + H]⁺ 443.1607; found 443.1603.

2-Ethyl 5-Methyl-11-(3-methoxybenzyl)-11*H***-indolizino[8,7-***b***]indole-2,5-dicarboxylate (23aC): Yellow solid; m.p. 171–173 °C; R_f = 0.42 (hexanes/EtOAc, 90:10). IR (KBr): \tilde{v} = 1718 (CO₂CH₃ and CO₂C₂H₅) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): \delta = 1.41 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 3.71 (s, 3 H, OCH₃), 4.05 (s, 3 H, CO₂CH₃), 4.37 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 5.77 (s, 2 H, NCH₂), 6.70–6.81 (m, 3 H, ArH), 7.19–7.24 (m, 2 H, ArH), 7.32– 7.41 (m, 3 H, ArH), 7.99 (d, J = 6.8 Hz, 1 H, ArH), 8.43 (s, 1 H, ArH), 9.41 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): \delta = 14.6, 48.3, 52.3, 55.3, 60.4, 100.8, 109.2, 110.1, 112.4, 112.8, 116.5, 118.1, 118.5, 119.3, 119.5, 121.5, 121.6, 123.8, 124.1, 124.8, 130.2, 134.1, 137.9, 140.0, 160.2, 163.2, 165.1 ppm. MS (ESI+): <math>m/z = 457.4 [M + H]⁺. HRMS (ESI): calcd. for C₂₇H₂₅N₂O₅ [M + H]⁺ 457.1763; found 457.1758.**

Methyl 12-(3,4,5-Trimethoxybenzyl)-1-oxo-2,3,4,12-tetrahydro-1*H*benzo[2,3]indolizino[8,7-*b*]indole-6-carboxylate (25): Yield: 91%; yellow solid; m.p. 174–176 °C; $R_f = 0.47$ (hexanes/EtOAc, 90:10). IR (KBr): $\tilde{v} = 1673$ (CO), 1710 (CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.15-2.19$ (m, 2 H, CH₂), 2.66 (t, *J* = 6.7 Hz, 2 H, CH₂), 2.87 (t, *J* = 6.0 Hz, 2 H, CH₂), 3.68 (s, 6 H, 2 OCH₃), 3.79 (s, 3 H, OCH₃), 4.05 (s, 3 H, CO₂CH₃), 5.73 (s, 2 H, NCH₂), 6.36 (s, 2 H, ArH), 7.30–7.44 (m, 4 H, ArH), 7.96 (d, *J* = 7.3 Hz, 1 H, ArH), 8.12 (s, 1 H, ArH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 25.0$, 26.7, 38.4, 46.9, 52.6, 56.2, 60.9, 97.0, 108.8, 109.9, 117.0, 117.3, 119.2, 119.8, 121.5, 123.6, 123.7, 124.6, 124.8, 133.7, 138.4, 139.5, 153.5, 163.5, 196.5 ppm. MS (ESI+): *m/z* = 513.2 [M + H]⁺. HRMS (ESI): calcd. for C₃₀H₂₉N₂O₆ [M + H]⁺ 513.2026; found 513.2033.

Typical Procedure for the Synthesis of Compound 17 By Using MnO₂: To a stirred solution of 12a (0.22 g, 0.5 mmol) in dichloromethane (15 mL) was added activated MnO₂ (0.4 g, 5 mmol), and the mixture was stirred for 2 h. Upon completion of the reaction, the reaction mixture was filtered through a bed of Celite, and the filtrate was concentrated to afford a residue. Triturating the residue with hexanes/EtOAc (80:20) [$R_f = 0.44$ (hexanes/EtOAc, 55:45)] afforded pure 17 (0.20 g, 92%) as a white solid.

Methyl 6-Oxo-3,4,5-trimethoxy-1,6-dihydro-7,13b-diazabenzo[5,6]cyclohepta[1,2,3-*jk*]fluorene-8-carboxylate (17): M.p. >250 °C; $R_f =$ 0.44 (hexanes/EtOAc, 55:45). IR (KBr): $\tilde{v} = 1708$ (CO and CO₂CH₃) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.83$ (s, 3 H, OCH₃), 3.97 (s, 3 H, OCH₃), 4.01 (s, 3 H, OCH₃), 4.05 (s, 3 H, CO₂CH₃), 5.39 (s, 2 H, NCH₂), 6.78 (s, 1 H, ArH), 7.41 (t, J = 6.0 Hz, 1 H, ArH), 7.71 (s, 2 H, ArH), 8.22 (d, J = 7.8 Hz, 1 H, ArH), 8.96 (s, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 48.7, 52.8, 56.4, 61.0, 62.8, 108.0, 109.7, 120.0, 121.2, 121.6, 122.6, 129.0, 129.4, 129.8, 131.7, 137.0, 138.9, 139.0, 141.2, 143.2, 153.5, 155.8, 166.5, 190.8 ppm. MS (ESI+): m/z = 433.1 [M + H]⁺. HRMS (ESI): calcd. for $C_{24}H_{21}N_2O_6 [M + H]^+$ 433.1400; found 433.1404.

Procedure for the Synthesis of Compound 26: To a stirred suspension of **7a** (0.43 g, 1 mmol) in dry methanol (25 mL) was added NaBH₄ (0.04 g, 1 mmol) at room temperature. The reaction mixture was stirred for 20 min, and upon completion of the reaction, methanol was removed under reduced pressure. The reaction was neutralized with 5% aq. HCl and extracted with chloroform (2×20 mL). The organic layers were pooled, washed with brine, dried (Na₂SO₄), and concentrated to afford **26** (0.41 g, 94%) as a yellow solid.

Supporting Information (see footnote on the first page of this article): Remaining spectroscopic data and copies of the ¹H NMR and ¹³C NMR spectra of all compounds.

Acknowledgments

S. H. and S. B. gratefully acknowledge financial support in the form of fellowships from the Council of Scientific and Industrial Research, New Delhi. All authors acknowledge the Sophisticated Analytical Instruments Facility of CDRI for providing the spectroscopic and analytical data. This work was supported by a grant from the Department of Science and Technology, New Delhi. We acknowledge the comments of the anonymous reviewers for improving the quality of the manuscript.

- [1] a) M. M. Airaksinen, I. Kari, Med. Biol. 1981, 59, 190-211; b) L. A. Anderson, A. Harris, J. D. Phillipson, J. Nat. Prod. 1983, 46, 374-378; c) C. S. L. Karin, S. L. Yang, M. F. Roberts, J. D. Phillipson, Phytochemistry 1990, 29, 141-143; d) J. E. Saxton (Ed.: G. A. Cordell), Academic Press, San Diego, CA, 1998, vol. 51, pp. 2-197; e) G. M. Carbrera, A. M. Seldes, J. Nat. Prod. 1999, 62, 759-760; f) P. C. Kuo, L. S. Shi, A. G. Damu, C. R. Su, C. H. Huang, C. H. Ke, J. B. Wu, A. J. Lin, K. F. Bastow, K. H. Lee, T. S. Wu, J. Nat. Prod. 2003, 66, 1324-1327; g) T. Kawasaki, K. Higuchi, Nat. Prod. Rep. 2005, 22, 761-793; h) F. Soriano-Agaton, D. Lagoutte, E. Poupon, F. Roblot, A. Fournet, J. C. Gantier, R. Hocquemiller, J. Nat. Prod. 2005, 68, 1581-1587; i) K. Higuchi, T. Kawasaki, Nat. Prod. Rep. 2007, 24, 843-868; j) T. A. Mansoor, C. Ramalhete, J. Molnar, S. Mulhovo, M. J. U. Ferreira, J. Nat. Prod. 2009, 72, 1147-1150; k) W. H. Jiao, H. Gao, C. Y. Li, F. Zhao, R. W. Jiang, Y. Wang, G. X. Zhou, X. S. Yao, J. Nat. Prod. 2010, 73, 167-171; 1) W. D. Inman, W. M. Bray, N. C. Gassner, R. S. Lokey, K. Tenney, Y. Y. Shen, K. TenDyke, T. Suh, P. Crews, J. Nat. Prod. 2010, 73, 255-257; m) S. F. Li, Y. T. Di, H. P. He, Y. Zhang, Y. H. Wang, J. L. Yin, C. J. Tan, S. L. Li, X. J. Hao, Tetrahedron Lett. 2011, 52, 3186-3188; n) S. T. S. Chan, A. N. Pearce, M. J. Page, M. Kaiser, B. R. Copp, J. Nat. Prod. 2011, 74, 1972–1979; o) H. Huang, Y. Yao, Z. He, T. Yang, J. Ma, X. Tian, Y. Li, C. Huang, X. Chen, W. Li, S. Zhang, C. Zhang, J. Ju, J. Nat. Prod 2011, 74, 2122-2127.
- [2] a) R. Cao, W. Peng, Z. Wang, A. Xu, Curr. Med. Chem. 2007, 14, 479–500 and the references cited therein; b) Q. Wu, R. Cao, M. Feng, X. Guan, C. Ma, J. Liu, H. Song, W. Peng, Eur. J. Med. Chem. 2009, 44, 533–540; c) J. Wu, M. Zhao, K. Qian, K. H. Lee, S. Morris-Natschke, S. Peng, Eur. J. Med. Chem. 2009, 44, 4153–4161; d) Y. Rook, K. U. Schmidtke, F. Gaube, D. Schepmann, B. Wunsch, J. Heilmann, J. Lehmann, T. Winckler, J. Med. Chem. 2010, 53, 3611–3617; e) C. Ma, R. Cao, B. Shi, S. Li, Z. Chen, W. Yi, W. Peng, Z. Ren, H. Song, Eur. J. Med. Chem. 2010, 45, 1515–1523; f) R. Kumar, L. Gupta, P. Pal, S. Khan, N. Singh, S. B. Katiyar, S. Meena, J. Sarkar, S. Sinha, J. K. Kanaujiya, S. Lochab, A. K. Trivedi, P. M. S. Chauhan, Eur. J. Med. Chem. 2010, 45, 2265–2276; g) R. Cao, X. Guan, B. Shi, Z. Chen, Z. Ren, W. Peng, H. Song,

FULL PAPER

Eur. J. Med. Chem. 2010, 45, 2503-2515; h) Z. Chen, R. Cao, L. Yu, B. Shi, J. Sun, L. Guo, Q. Ma, W. Yi, X. Song, H. Song, Eur. J. Med. Chem. 2010, 45, 4740-4745; i) Z. Chen, R. Cao, B. Shi, W. Yi, L. Yu, H. Song, Z. Ren, W. Peng, Bioorg. Med. Chem. Lett. 2010, 20, 3876-3879; j) H. A. Mohamed, N. M. R. Girgis, R. Wilcken, M. R. Bauer, H. N. Tinsley, B. D. Gary, G. A. Piazza, F. M. Boeckler, A. H. Abadi, J. Med. Chem. 2011, 54, 495-509; k) T. Suzuki, T. Kubota, J. Kobayashi, Bioorg. Med. Chem. Lett. 2011, 21, 4220-4223; 1) R. Ikeda, T. Iwaki, T. Iida, T. Okabayashi, E. Nishi, M. Kurosawa, N. Sakai, T. Konakahara, Eur. J. Med. Chem. 2011, 46, 636-646; m) W. Bi, Y. Bi, P. Xue, Y. Zhang, X. Gao, Z. Wang, M. Li, M. Baudy-Floch, N. Ngerebara, X. Li, K. M. Gibson, L. Bi, Eur. J. Med. Chem. 2011, 46, 2441-2452; n) J. Reniers, S. Robert, R. Frederick, B. Masereel, S. Vincent, J. Wouters, Bioorg. Med. Chem. 2011, 19, 134-144; o) V. A. Barbosa, A. S. N. Formagio, F. C. Savariz, M. A. Foglio, H. M. Spindola, J. E. D. Carvalho, E. Meyer, M. H. Sarragiotto, Bioorg. Med. Chem. 2011, 19, 6400-6408.

- [3] a) G. Dominguez, J. Perez-Castells, Eur. J. Org. Chem. 2011, 7243–7253; b) F. Pin, S. Comesse, A. Daich, Tetrahedron 2011, 67, 5564–5571; c) S. Saha, C. V. R. Reddy, B. Patro, Tetrahedron Lett. 2011, 52, 4014–4016; d) L. Jung-Deyon, B. Giethlen, A. Mann, Eur. J. Org. Chem. 2011, 6409–6412; e) X. Wu, L. Nie, H. Fang, J. Chen, W. Cao, G. Zhao, Eur. J. Org. Chem. 2011, 6755–6763; f) T. Mizuno, Y. Oonishi, M. Takimoto, Y. Sato, Eur. J. Org. Chem. 2011, 2606–2609.
- [4] V. Singh, S. Batra, Curr. Org. Synth. 2012, DOI: BSP/COS/E-Pub/00007.
- [5] a) V. Singh, S. Hutait, S. Batra, *Eur. J. Org. Chem.* 2009, 6211–6216; b) V. Singh, S. Hutait, S. Batra, *Eur. J. Org. Chem.* 2010, 3684–3691.
- [6] a) V. Singh, S. Hutait, S. Biswas, S. Batra, *Eur. J. Org. Chem.* 2010, 531–539; b) S. Hutait, V. Singh, S. Batra, *Eur. J. Org. Chem.* 2010, 6269–6276; c) S. Hutait, M. Nayak, P. Ashok, S. Batra, *Synthesis* 2011, 419–430.
- [7] C. P. Hasbun, M. Calderon, O. Castro, E. Gacs-Baitz, G. D. Monache, F. D. Monache, *Tetrahedron Lett.* **1989**, *30*, 6199– 6202.
- [8] T. R. Kelly, X. Wei, J. Sundaresan, *Tetrahedron Lett.* 1993, 34, 6173–6176.
- [9] a) W. Zhong, W. Ma, Y. Liu, *Tetrahedron* 2011, 67, 3509–3518;
 b) K. H. Kim, H. S. Lee, J. N. Kim, *Tetrahedron Lett.* 2009, 50, 1249–1251;
 c) H. N. Lim, S. H. Ji, K. J. Lee, *Synthesis* 2007, 16, 2454–2460.
- [10] a) D. Basavaiah, M. Bakthadoss, J. G. Reddy, Synthesis 2001, 919–923; b) D. Basavaiah, R. M. Reddy, Tetrahedron Lett.

2001, *42*, 3025–3027; c) H. J. Lee, T. H. Kim, J. N. Kim, *Bull. Korean Chem. Soc.* **2001**, *22*, 1063–1064; d) D. Basavaiah, D. S. Sharada, A. Veerendhar, *Tetrahedron Lett.* **2004**, *45*, 3081–3083.

- [11] a) N. Philippe, F. Denivet, J. L. Vasse, J. S. D. O. Santos, V. Levacher, G. Dupas, *Tetrahedron* 2003, 59, 8049–8056; b) V. A. Mahajan, H. B. Borate, R. D. Wakharkar, *Tetrahedron* 2006, 62, 1258–1272; c) S. Guo, Y. Liu, Org. Biomol. Chem. 2008, 6, 2064–2070; d) M. Bandini, A. Eichholzer, P. Kotrusz, M. Tragni, S. Troisi, A. U. Ronchi, Adv. Synth. Catal. 2009, 351, 319–324; e) J. Wang, L. Zhang, Y. Jing, W. Huang, X. Zhou, *Tetrahedron Lett.* 2009, 50, 4978–4982; f) W. Ying, C. L. Barnes, M. Harmata, *Tetrahedron Lett.* 2011, 52, 177–180.
- [12] C. Liebert, M. K. Brinks, A. G. Capacci, M. J. Fleming, M. Lautens, Org. Lett. 2011, 13, 3000–3003.
- [13] a) C. Pomeranz, Monatsh. Chem. 1893, 14, 116; b) P. Fritsch, Justus Liebigs Ann. Chem. 1895, 386, 1; c) J. M. Bobbitt, D. N. Roy, A. Marchand, C. W. Allen, J. Org. Chem. 1967, 32, 2225– 2227; d) J. M. Bobbitt, J. C. Sib, J. Org. Chem. 1968, 33, 856– 858; e) M. Schlosser, G. Simig, H. Gencste, Tetrahedron 1998, 54, 9023–9032; f) C. Chan, R. Heid, S. Zheng, J. Guo, B. Zhou, T. Furuuchi, S. J. Danishefsky, J. Am. Chem. Soc. 2005, 127, 4596–4598; g) A. J. Jimenez, C. Jeandon, J. P. Gisselbrecht, R. Ruppert, Eur. J. Org. Chem. 2009, 5725–5730.

- [15] a) Y. Shen, H. Liu, M. Wu, W. Du, Y. Chen, N. Li, J. Org. Chem. 1991, 56, 7160–7162; b) A. Alizadeh, M. M. Khodaei, E. Nazari, Bull. Korean Chem. Soc. 2007, 28, 1854–1856; c) M. Noji, T. Ohno, K. Fuji, N. Futaba, H. Tajima, K. Ishii, J. Org. Chem. 2003, 68, 9340–9347; d) K. Mertins, I. Iovel, J. Kischel, A. Zapf, M. Beller, Angew. Chem. 2005, 117, 242; Angew. Chem. Int. Ed. 2005, 44, 238–242.
- [16] a) D. J. Tracy, R. L. Reierson, J. Surfactants Deterg. 2002, 5, 169–172; b) A. Whitehead, M. D. McReynolds, J. D. Moore, P. R. Hanson, Org. Lett. 2005, 7, 3375–3378; c) A. Whitehead, J. D. Waetzig, C. D. Thomas, P. R. Hanson, Org. Lett. 2008, 10, 1421–1424; d) F. Robertson, J. Wu, Org. Lett. 2010, 12, 2668–2671.

Received: January 19, 2012 Published Online: March 7, 2012