ARTICLE IN PRESS

Tetrahedron xxx (2014) 1-5

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Phenanthroline–dipyrromethene conjugates: synthesis, characterization, and spectroscopic investigations

Antonio Garrido Montalban^{*}, Antonio J. Herrera, Jes Johannsen, Andrew J.P. White, David J. Williams

Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK

ARTICLE INFO

Article history: Received 5 May 2014 Received in revised form 10 July 2014 Accepted 15 July 2014 Available online xxx

Keywords: Dipyrromethenes Phenanthroline Ligands Supramolecular Photophysical

ABSTRACT

Mono- and tri-topic ligands, based on dipyrromethenes and the 1,10-phenanthroline nucleus, as well as BF₂ complexes derived thereof are described. While BODIPY 12 has been X-ray crystallographically characterized, the structural features of the free ligands 9 and 10 may render them useful as precursors for the elaboration of novel supramolecular architectures.

© 2014 Published by Elsevier Ltd.

Tetrahedror

1. Introduction

The self-assembly of suitable tectons using the coordination motif is now recognized as a highly efficient strategy for the construction of supramolecular architectures.¹ The incorporation of transition metal centers into such species offers access to potential host molecules with electron transfer, magnetic, and/or optical properties.² From the many molecular polygons described thus far, triangular structures were scarce and little studied,³ at the time we initiated our work. More recently, however, the synthesis of multimetallic supramolecular triangles, including those derived from directional-bonding rather than the template approach, has met more success.⁴ Our efforts in this field are aimed toward the design and synthesis of such metal-based macrocycles and, initially, we first reported the synthesis of novel $C_{2\nu}$ -symmetrical boroncomplexes derived from dipyrromethene-2,10-dicarboxylates.⁵ Subsequently, in addition to a new family of N2O2-tetradentate Schiff base ligands and complexes derived thereof,⁶ we reported the synthesis of novel rigid angular building blocks with a preprogrammed 60° angle based on the dipyrromethene-(dipyrrin) and 1,10-phenanthroline-ligands.⁷ Since then, template directed multimetallic supramolecular triangles incorporating the 1,10phenanthroline nucleus have been described.⁸ Herein, we now report full experimental details on the synthesis, characterization, and spectroscopic evaluation of dipyrromethene, phenan-throline—dipyrromethene conjugates, and their respective boron-complexes.

2. Results and discussion

meso-Aryl-dipyrrins can be prepared through oxidation of the corresponding dipyrromethanes, which in turn are accessible via the acid catalyzed condensation of arylaldehydes and pyrrole,⁹ or directly from the latter and arylacyl chlorides.¹⁰ However, when excess pyrrole was reacted with phenanthrolinedicarboxaldehyde 1¹¹ or its diacyl chloride derivative **2**,¹¹ under a variety of conditions (vide infra), multicomponent mixtures, from which the expected bis-adducts could not be isolated, were obtained. We therefore turned our attention to less reactive pyrrole derivatives with improved organic solubility.⁵ Thus, while no reaction between acyl chloride **2** with $\mathbf{3}^{12}$ or $\mathbf{4}^{13}$ occurred, treatment of trisubstituted pyrrole **3** with dialdehyde **1** in a 4:1 molar ratio in TFA gave the desired bis(dipyrromethane) 5 in 65% yield (Scheme 1). Similarly, reaction of 1 with an excess of ethyl pyrrole ester 4 in TFA at room temperature gave the bis-adduct **6** in an analogous manner (66%). However, with a co-solvent (MeOH or CH₂Cl₂) or other acid catalysts (p-TsOH or $BF_3 \cdot OEt_2$) lower yields or no reaction was observed.

^{*} Corresponding author. Tel.: +1 858 453 7200; fax: +1 858 453 7210; e-mail addresses: amontalban@arenapharm.com, catalaba@hotmail.com (A. Garrido Montalban).

ARTICLE IN PRESS

A. Garrido Montalban et al. / Tetrahedron xxx (2014) 1-5

In comparison, dipyrromethanes **7** (85%) and **8** (65%) were best obtained via treatment of **3** and **4** with *p*-nitrobenzaldehyde (2:1 molar ratio) in CH₂Cl₂ in the presence of 0.5 equiv of BF₃·OEt₂, respectively (Scheme 2).

Oxidation of **5**, **6** (Scheme 3), and **8** (Scheme 4) to their corresponding dipyrromethene derivatives **9** (98%), **10** (92%), and **11** (90%) occurred readily with DDQ in dry CH_2Cl_2 . In contrast to their precursors, **9**–**11** appear to be hydrogen bonded to a molecule of water as indicated from their proton NMR- and mass-spectra.

In order to probe the coordination properties of our novel ligands **9**, **10**, and **11**, we decided to synthesize BF_2 complexes (BODIPY dyes) since they are known to exhibit rich electro- and photo-chemical properties.¹⁴ Thus, treatment of **11** with an excess of $BF_3 \cdot OEt_2$ in dry toluene in the presence of Et_3N at ambient temperature gave the corresponding boron complex **12** in high yield (95%, Scheme 4).

The solid state structure of **12** is illustrated in Fig. 1. The two pyrrole rings and their linking carbon atom are co-planar to within 0.09 Å, the boron atom lying 0.18 Å out of this plane. Thus, the central C_3N_2B ring has a slightly folded conformation, there being a ca. 8° fold about the N…N vector (the C_3N_2 portion being planar to within 0.008 Å), and this results in a pseudo axial/equatorial disposition of the two fluorine substituents. The *para*-nitrophenyl unit is oriented orthogonally (88°) to the plane of the central sixmembered heterocyclic ring.

On the other hand, reaction of the tri-topic ligands **9** and **10** with an excess of BF₃·OEt₂ in dry toluene in the presence of Et₃N at ambient temperature, resulted in formation of both, the mono- and dinuclear complexes **13** (18%), **14** (24%) and **15** (52%), **16** (65%), respectively (Scheme 5). While the $C_{2\nu}$ -symmetric boron-complex **12** exhibits first order NMR characteristics, complexes **13–16** display diastereotopic methylene signals in their proton- as well as two distinct resonances (dq) in their ¹⁹F NMR spectra, consistent with restricted rotation along the σ -bonds connecting the dipyrrin and

Fig. 1. X-ray crystal structure of 12.

Please cite this article in press as: Garrido Montalban, A.; et al., Tetrahedron (2014), http://dx.doi.org/10.1016/j.tet.2014.07.054

phenanthroline fragments. In addition, **13** and **14** appear also to complex a molecule of water (vide supra).

Preliminary results show the red colored complexes **13** (λ_{max} =577 nm), **14** (λ_{max} =575 nm), **15** (λ_{max} =580 nm), and **16** (λ_{max} =579 nm) to be distinctively fluorescent (Fig. 2) and as such are expected to have rich and diverse physicochemical properties.

Fig. 2. Fluorescence spectra of complexes 13-16.

3. Conclusion

In summary, the synthesis and initial complexation studies of novel angular building blocks, based on the dipyrrin- and 1,10phenanthroline-nuclei, have been carried out successfully. These rigid multidentate ligands may prove useful for the elaboration of coordinatively-linked supramolecular triangles. As our preliminary photophysical investigations indicate, complexes derived thereof should have rich and diverse physicochemical properties. Such studies will be the subject of future work.

4. Experimental section

4.1. General procedures

All reactions were conducted in oven- or flame-dried glassware. Hexanes refer to the petroleum fraction bp 40–60 $^{\circ}$ C. Solvents used

for reactions were distilled prior to use: toluene (from sodium); dichloromethane (from CaH₂). All other reagents were used as commercially supplied. TLC was carried out on E. Merck precoated silica gel $60F_{254}$ plates. Chromatography refers to flash chromatography on E. Merck silica gel 60, 40–60 µm (eluants are given in parentheses). Phenanthrolinedicarboxaldehyde **1**,¹¹ benzyl 3,4-diethylpyrrole-2-carboxylate (**3**),¹² and ethyl 3,4-diethylpyrrole-2-carboxylate (**4**)¹³ were prepared according to literature procedures.

4.2. Bis(dipyrromethane) (5)

To a solution of dialdehyde 1 (0.48 g, 2.0 mmol) in TFA (20 mL), benzyl pyrrole ester 3 (2.1 g, 8.2 mmol) was added and the mixture stirred at 20 °C for 20 min under N₂. The reaction mixture was poured onto ice and water (100 mL), neutralized with 2.5 M NaOH, and extracted with $CHCl_3$ (3×20 mL). The combined organics were dried (Na₂SO₄), rotary evaporated and the crude residue redissolved in the minimum amount of CHCl₃. Precipitation upon the addition of EtOAc followed by filtration and drying under vacuum gave bis(dipyrromethane) 5 (1.6 g, 65%) as a pale yellow solid: R_f 0.15 (hexanes/Et₂O 1:1); mp 193 °C; IR (film) *v*_{max} 3303, 1677, 1436, 1249 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.98 (t, *J*=7.4 Hz, 12H), 1.06 (t, J=7.3 Hz, 12H), 2.51 (q, J=7.4 Hz, 8H), 2.66 (q, J=7.3 Hz, 8H), 4.93 (s, 8H), 6.13 (s, 2H), 7.08 (m, 20H), 7.63 (d, J=8.3 Hz, 2H), 7.72 (s, 2H), 8.19 (d, J=8.3 Hz, 2H), 10.69 (s, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 16.4, 17.9, 18.9, 42.6, 65.7, 118.0, 123.5, 124.0, 126.6, 127.9, 128.1, 128.2, 128.5, 131.6, 134.0, 137.0, 138.3, 144.9, 160.2, 161.3; MS (FAB) m/z 1228 [M-H]⁺; HRMS (FAB) calcd for C₇₈H₈₁N₆O₈: [M+H]⁺ 1229.6116, found [M+H]⁺ 1229.6148. Anal. Calcd for C₇₈H₈₀N₆O₈: C, 76.20; H, 6.56; N, 6.84. Found: C, 76.42; H, 6.31; N, 6.68.

4.3. Bis(dipyrromethane) (6)

The same reaction as above with ethyl pyrrole ester **4** (1.6 g, 8.2 mmol), gave bis(dipyrromethane) **6** (1.3 g, 66%) as a white solid: R_f 0.25 (hexanes/Et₂O 1:1); mp 243 °C; IR (film) ν_{max} 3300, 1681, 1438, 1254 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.02 (t, *J*=7.4 Hz, 12H), 1.09 (t, *J*=7.1 Hz, 12H), 1.15 (t, *J*=7.4 Hz, 12H), 2.56 (q, *J*=7.4 Hz, 8H), 2.73 (q, *J*=7.4 Hz, 8H), 4.04 (m, 8H), 6.16 (s, 2H), 7.65 (d, *J*=8.3 Hz, 2H), 7.70 (s, 2H), 8.19 (d, *J*=8.3 Hz, 2H), 10.75 (s, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.5, 16.2, 16.3, 17.9, 18.8, 42.4, 59.8, 118.0, 123.1, 124.0, 126.4, 127.9, 131.6, 133.6, 137.9, 144.9, 160.3, 161.6; MS (FAB) *m/z* 980 [M–H]⁺; HRMS (FAB) calcd for C₅₈H₇₂N₆O₈: [M⁺⁻] 980.5412, found [M⁺⁻] 980.5374. Anal. Calcd for C₅₈H₇₂N₆O₈: C, 70.99; H, 7.40; N, 8.56. Found: C, 70.62; H, 7.59; N, 8.61.

4.4. Dipyrromethane (7)

To a solution of *p*-nitrobenzaldehyde (0.30 g, 2.0 mmol) and benzyl pyrrole ester **3** (1.0 g, 4.0 mmol) in dry CH₂Cl₂ (50 mL), BF₃·OEt₂ (0.13 mL, 1.0 mmol) was added dropwise at 0 °C under N₂. The mixture was allowed to warm up to 20 °C and stirred for a further 16 h. The dark red mixture was extracted with CH₂Cl₂ $(3\times30 \text{ mL})$, washed with aq (5%) NaHCO₃ $(3\times25 \text{ mL})$, dried (Na₂SO₄), rotary evaporated, and chromatographed (CH₂Cl₂/hexanes 7:1) to give dipyrromethane 7 (1.1 g, 85%) as a yellow/green solid: Rf 0.13 (CH₂Cl₂/hexanes 7:1); mp 83 °C; IR (film) 3345, 1702, 1643, 1445, 1348, 1255 $\nu_{\rm max}$ cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.90 (t, J=7.5 Hz, 6H), 1.09 (t, J=7.5 Hz, 6H), 2.30 (q, J=7.5 Hz, 4H), 2.68 (q, J=7.5 Hz, 4H), 5.21 (s, 4H), 5.63 (s, 1H), 7.20 (d, J=8.9 Hz, 2H), 7.33 (m, 10H), 8.10 (d, J=8.9 Hz, 2H), 8.62 (br s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 16.2, 16.3, 17.6, 18.8, 40.2, 66.3, 118.5, 124.3, 125.0, 128.4, 128.5, 128.9, 129.3, 130.8, 134.6, 136.4, 147.0, 148.0, 161.7; MS (FAB) *m*/*z* 647 [M⁺·]; HRMS (FAB) calcd for C₃₉H₄₁N₃O₆: [M⁺·] 647.2995, found [M^{+.}] 647.2974.

4

ARTICLE IN PRESS

A. Garrido Montalban et al. / Tetrahedron xxx (2014) 1-5

4.5. Dipyrromethane (8)

The same reaction as above with ethyl pyrrole ester **4** (0.39 g, 2.0 mmol), gave after chromatography (CH₂Cl₂/hexanes 7:1) dipyrromethane **8** (0.34 g, 65%) as a yellow solid: R_f 0.10 (CH₂Cl₂/hexanes 7:1); mp 139 °C; IR (film) 3347, 1689, 1644, 1460, 1348, 1252 ν_{max} cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.95 (t, *J*=7.5 Hz, 6H), 1.16 (t, *J*=7.4 Hz, 6H), 1.30 (t, *J*=7.1 Hz, 6H), 2.35 (q, *J*=7.5 Hz, 4H), 2.72 (q, *J*=7.4 Hz, 4H), 4.23 (m, 4H), 5.68 (s, 1H), 7.24 (d, *J*=8.6 Hz, 2H), 8.16 (d, *J*=8.6 Hz, 2H), 8.70 (br s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.7, 16.1, 16.3, 17.6, 18.8, 40.1, 60.4, 118.8, 124.2, 124.9, 129.4, 130.5, 134.2, 147.4, 148.4, 162.1; MS (FAB) *m*/*z* 523 [M⁺⁻]; HRMS (FAB) calcd for C₂₉H₃₇N₃O₆: C, 66.52; H, 7.12; N, 8.02. Found: C, 66.78; H, 7.25; N, 8.09.

4.6. Bis(dipyrromethene) (9)

To a solution of bis(dipyrromethane) **5** (79 mg, 64 μ mol) in dry CH₂Cl₂ (4 mL), DDQ (44 mg, 0.19 mmol) was added and the mixture stirred at 20 °C for 10 min under N₂. The dark brown mixture was diluted with CH₂Cl₂ (20 mL), washed with brine (3×15 mL), dried (MgSO₄), rotary evaporated, and chromatographed (hexanes/EtOAc 9:1–4:1) to give bis(dipyrromethene) 9 (77 mg, 98%) as an orange/ brown solid: Rf 0.40 (hexanes/EtOAc 2.3:1); mp 103 °C; IR (film) $\nu_{\rm max}$ 3289, 1668, 1240 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.46 (br m, 12H), 1.10 (m, 12H), 1.90 (br m, 8H), 2.67 (br m, 8H), 5.37 (br m, 8H), 6.53 (s, 2H), 7.28 (d, J=8.5 Hz, 2H), 7.34-7.60 (m, 20H), 7.88 (s, 2H), 8.27 (d, J=8.5 Hz, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz) δ 14.1, 16.0, 17.4, 18.3, 66.1, 71.7, 115.8, 123.1, 126.6, 127.8, 128.0, 128.5, 135.1, 136.4, 137.8, 143.9, 162.2, 164.1; MS (FAB) m/z 1225 [M^{+.}]; HRMS (FAB) calcd for $C_{78}H_{77}N_6O_8$: $[M+H]^+$ 1225.5803, found $[M+H]^+$ 1125.5834. Anal. Calcd for C78H76N6O8: C, 76.45; H, 6.25; N, 6.86. Found: C, 76.40; H, 6.35; N, 6.62.

4.7. Bis(dipyrromethene) (10)

The same reaction as above with bis(dipyrromethane) **6** (92 mg, 94 µmol), gave after chromatography (hexanes/EtOAc 9:1–4:1) bis(dipyrromethene) **10** (84 mg, 92%) as a pale pink solid: R_f 0.43 (hexanes/EtOAc 2.3:1); mp 170 °C; IR (film) ν_{max} 3288, 1666, 1243 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.45 (br m, 12H), 1.12 (t, *J*=7.1 Hz, 12H), 1.20 (m, 12H), 1.89 (br m, 8H), 2.65 (m, 8H), 4.32 (br m, 8H), 6.49 (s, 2H), 7.24 (d, *J*=8.5 Hz, 2H), 7.85 (s, 2H), 8.23 (d, *J*=8.5 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.0, 14.3, 15.8, 17.3, 18.2, 60.0, 71.7, 116.0, 123.0, 126.5, 127.7, 134.3, 134.7, 137.6, 143.9, 162.4, 164.2; MS (FAB) *m/z* 977 [M⁺⁻]; HRMS (FAB) calcd for C₅₈H₆₉N₆O₈: [M+H]⁺ 977.5177, found [M+H]⁺ 977.5185. Anal. Calcd for C₅₈H₆₈N₆O₈: C, 71.29; H, 7.01; N, 8.60. Found: C, 71.35; H, 7.13; N, 8.75.

4.8. Dipyrromethene (11)

Following the same procedure as for the preparation of **9**, dipyrromethane **8** (84 mg, 0.16 mmol) and DDQ (73 mg, 0.32 mmol) gave after 16 h and chromatography (hexanes/EtOAc 9:1–4:1) dipyrromethene **11** (75 mg, 90%) as a pale yellow solid: R_f 0.45 (hexanes/EtOAc 2.3:1); mp 174 °C; IR (film) ν_{max} 3431, 1685, 1524, 1444, 1351, 1241 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.78 (t, *J*=7.5 Hz, 6H), 1.18 (t, *J*=7.4 Hz, 6H), 1.34 (t, *J*=7.1 Hz, 6H), 2.07–2.29 (m, 4H), 2.73 (q, *J*=7.5 Hz, 4H), 4.28 (q, *J*=7.1 Hz, 4H), 7.59 (d, *J*=8.8 Hz, 2H), 8.83 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.3, 15.2, 15.7, 17.6, 18.3, 60.2, 74.9, 117.6, 123.5, 123.9, 128.5, 132.3, 135.2, 147.6, 150.2, 161.6; MS (FAB) *m/z* 522 [M^{+.}]; HRMS (FAB) calcd for C₂₉H₃₆N₃O₆: [M+H]⁺ 522.2604, found [M+H]⁺ 522.2587. Anal.

Calcd for C₂₉H₃₅N₃O₆: C, 66.78; H, 6.76; N, 8.06. Found: C, 66.76; H, 6.64; N, 7.84.

4.9. BODIPY (12)

To a solution of dipyrromethene **11** (60 mg, 0.12 mmol) in dry toluene (5 mL), BF₃·OEt₂ (0.72 mL, 5.7 mmol) was added dropwise at 20 °C under N₂. The mixture was allowed to stir at 20 °C for 10 min, after which Et₃N (0.43 mL, 3.1 mmol) was added dropwise, whereby the solution turned from dark purple to red. After stirring for a further 30 min at 20 °C, the reaction mixture was neutralized with 2 M HCl, extracted with EtOAc $(3 \times 10 \text{ mL})$, dried (MgSO₄), rotary evaporated, and chromatographed (hexanes/EtOAc 4:1-2.3:1) to give complex **12** (62 mg, 95%) as an orange/red solid: $R_f 0.40$ (hexanes/EtOAc 2.3:1); mp 235–240 °C; IR (film) ν_{max} 1734, 1528, 1350, 1231, 1168 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.71 (t, J=7.5 Hz, 6H), 1.09 (t, J=7.5 Hz, 6H), 1.45 (t, J=7.1 Hz, 6H), 1.60 (q, *J*=7.5 Hz, 4H), 2.44 (q, *J*=7.5 Hz, 4H), 4.49 (q, *J*=7.1 Hz, 4H), 7.68 (d, J=8.7 Hz, 2H), 8.41 (d, J=8.7 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.0, 15.1, 16.2, 17.3, 18.9, 62.2, 77.2, 123.5, 130.0, 131.5, 135.5, 140.7, 146.7, 147.6, 148.8, 162.1; ¹¹B NMR (CDCl₃, 125 MHz) δ 0.04 (t, J=27.7 Hz); ¹⁹F NMR (CDCl₃, 235 MHz) δ –145.8 (q, J=27.7 Hz); MS (FAB) m/z 569 [M^{+.}]; HRMS (FAB) calcd for C₂₉H₃₄BF₂N₃O₆: [M^{+.}] 569.2509, found [M^{+.}] 569.2507. Crystal data for **12**: C₂₉H₃₄BF₂N₃O₆, M=569.4, monoclinic, $P2_1/c$ (no. 14), a=20.478(3), b=17.580(2), c=8.131(3) Å, $\beta=100.99(2)^{\circ}$, V=2873(1) Å³, Z=4, $D_{c}=1.316$ g cm⁻³, μ (Cu K α)=8.37 cm⁻¹, T=193 K, orange platy needles; 4238 independent measured reflections, F^2 refinement, R_1 =0.107, $wR_2=0.267$, 3112 independent observed reflections $[|F_0|>4\sigma(|F_0|)]$, $2\theta = 120^{\circ}$], 386 parameters. The high final value for R_1 is a consequence of the very poor quality of the crystalline sample, which suffered from multiple twinning effects; the constitution and structure of the compound is, however, unambiguous.

4.10. Complexes 13 and 15

The same reaction as above with bis(dipyrromethene) 9 (16 mg, 13 µmol) and BF₃·OEt₂ (0.17 mL, 1.3 mmol), gave after chromatography (hexanes/EtOAc 4:1-2.3:1) complex 13 (3 mg, 18%) as a red solid: R_f 0.69 (hexanes/EtOAc 1:1); mp 103 °C; IR (CHCl₃) ν_{max} 3440, 1702, 1536, 1231, 1167, 1126 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.53 (t, *J*=7.4 Hz, 6H), 0.68 (t, *J*=7.4 Hz, 6H), 0.96 (t, *J*=7.4 Hz, 6H), 1.10 (t, J=7.4 Hz, 6H), 1.31 (m, 2H), 1.61 (m, 2H), 2.12 (m, 4H), 2.37 (m, 4H), 2.70 (m, 4H), 5.21 and 5.27 (ABq, J=12.5 Hz, 4H), 5.47 (s, 4H), 7.25–7.44 (m, 16H), 7.50–7.60 (m, 4H), 7.62 (d, J=8.4 Hz, 1H), 7.80 (d, J=8.2 Hz, 1H), 7.99 (s, 2H), 8.32 (d, J=8.4 Hz, 1H), 8.43 (d, J=8.2 Hz, 1H), 9.02 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 15.2, 15.4, 15.5, 17.3, 17.5, 18.3, 19.0, 65.7, 67.9, 74.6, 77.3, 117.0, 122.0, 124.1, 124.3, 127.0, 127.6, 128.0, 128.1, 128.3, 128.5, 128.6, 128.8, 132.8, 133.1, 135.3, 136.4, 136.5, 137.5, 143.9, 144.3, 145.2, 145.8, 147.9, 152.9, 160.8, 160.9, 162.1; ^{11}B NMR (CDCl₃, 125 MHz) δ 0.23 (t, J=28.0 Hz); ¹⁹F NMR (CDCl₃, 235 MHz) δ –142.7 (dq, J=28.0 and 96.6 Hz), -148.7 (dq, J=28.0 and 96.6 Hz); MS (FAB) m/z 1271 [M-2H]⁺; HRMS (FAB) calcd for C₇₈H₇₅BF₂N₆O₈: [M^{+.}] 1272.5708, found [M^{+,}] 1272.5736, followed by **15** (9 mg, 52%) as a dark red solid: *R*_f 0.56 (hexanes/EtOAc 1:1); mp 240 °C; IR (CHCl₃) *v*_{max} 1731, 1536, 1226, 1170, 1128 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.48 (t, J=7.4 Hz, 12H), 0.89 (t, J=7.5 Hz, 12H), 1.25 (m, 4H), 1.39 (m, 4H), 2.29 (m, 8H), 5.42 (s, 8H), 7.29-7.40 (m, 12H), 7.47-7.57 (m, 8H), 7.88 (d, J=8.2 Hz, 2H), 8.09 (s, 2H), 8.48 (d, J=8.2 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 15.5, 16.0, 17.6, 19.1, 68.2, 77.6, 125.0, 128.3, 128.6, 128.8, 129.1, 129.4, 133.1, 135.6, 136.8, 145.3, 145.4, 146.2, 147.8, 153.9, 162.3; ¹¹B NMR (CDCl₃, 125 MHz) δ 0.09 (t, J=27.8 Hz); ¹⁹F NMR (CDCl₃, 235 MHz) δ –141.6 (dq, J=27.8 and 95.6 Hz), –150.1 (dq, *J*=27.8 and 95.6 Hz); MS (FAB) *m*/*z* 1321 [M^{+.}], 1243 [M–Ph]⁺;

Please cite this article in press as: Garrido Montalban, A.; et al., Tetrahedron (2014), http://dx.doi.org/10.1016/j.tet.2014.07.054

HRMS (FAB) calcd for $C_{78}H_{74}B_2F_4NaN_6O_8$: $[M+Na]^+$ 1343.5588, found $[M+Na]^+$ 1343.5611.

4.11. Complexes 14 and 16

Following the same procedure as for the preparation of 12, bis(dipyrromethane) 10 (81 mg, 83 μ mol) and BF₃·OEt₂ (0.52 mL, 4.1 mmol) gave after chromatography (hexanes/EtOAc 4:1-2.3:1) complex **14** (20 mg, 24%) as a red solid: R_f 0.40 (hexanes/EtOAc 2.3:1); mp 185–190 °C; IR (film) v_{max} 3457, 1697, 1538, 1236, 1168, 1128 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.55 (t, *J*=7.4 Hz, 6H), 0.70 (t, J=7.4 Hz, 6H), 1.06 (t, J=7.5 Hz, 6H), 1.15 (t, J=7.3 Hz, 6H), 1.31 (t, J=7.1 Hz, 6H), 1.46 (t, J=7.1 Hz, 8H), 1.79 (m, 2H), 2.13 (m, 4H), 2.41 (m, 4H), 2.70 (q, J=7.3 Hz, 4H), 4.25 (dq, J=1.6 and 7.1 Hz, 4H), 4.49 (q, J=7.1 Hz, 4H), 7.63 (d, J=8.4 Hz, 1H), 7.82 (d, J=8.2 Hz, 1H), 8.00 (s, 2H), 8.33 (d, J=8.4 Hz, 1H), 8.44 (d, J=8.2 Hz, 1H), 8.99 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 14.0, 14.4, 15.2, 15.4, 15.7, 17.3, 17.5, 18.2, 19.0, 59.8, 62.0, 74.7, 117.3, 122.0, 124.0, 126.9, 127.6, 128.6, 128.9, 132.7, 134.8, 135.1, 136.5, 137.4, 143.9, 144.3, 145.0, 146.2, 147.8, 152.9, 161.1, 162.3; ¹¹B NMR (CDCl₃, 125 MHz) δ 0.14 (t, *J*=27.8 Hz); $^{19}\mathrm{F}$ NMR (CDCl₃, 235 MHz) δ –143.2 (dq, J=27.8 and 97.5 Hz), -148.6 (dq, J=27.8 and 97.5 Hz); MS (FAB) m/z 1023 [M-2H]⁺; HRMS (FAB) calcd for C₅₈H₆₇BF₂N₆O₈: [M^{+,}, monoisotopic] 1023.5120, found: [M^{+,}, monoisotopic] 1023.5319, followed by 16 (58 mg, 65%) as a dark red solid: *R*_f 0.24 (hexanes/EtOAc 2.3:1); mp 235–240 °C; IR (film) v_{max} 1722, 1540, 1226, 1170, 1137, 1099 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.51 (t, *J*=7.4 Hz, 12H), 1.01 (t, *J*=7.5 Hz, 12H), 1.31 (m, 4H), 1.42 (t, *J*=7.1 Hz, 16H), 2.36 (m, 8H), 4.44 (m, 8H), 7.91 (d, J=8.2 Hz, 2H), 8.13 (s, 2H), 8.51 (d, J=8.2 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.9, 15.1, 15.7, 17.3, 18.8, 61.9, 77.4, 124.6, 128.0, 129.2, 132.6, 135.1, 136.5, 144.9, 145.1, 146.2, 147.3, 153.6, 162.2; ¹¹B NMR (CDCl₃, 125 MHz) δ 0.02 (t, *I*=27.7 Hz); ¹⁹F NMR (CDCl₃, 235 MHz) δ –142.2 (dq, J=27.7 and 96.4 Hz), –149.7 (dq, J=27.7 and

96.4 Hz); MS (FAB) m/z 1073 [M^{+.}]; HRMS (FAB) calcd for $C_{58}H_{67}B_2F_4N_6O_8$: [M+H]⁺ 1073.5142, found: [M+H]⁺ 1073.5167.

Acknowledgements

We thank Prof. A.G.M. Barrett, the Erasmus Scheme (J.J.), and the Spanish Government (A.J.H.) for generous support of our studies.

References and notes

- 1. Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3537.
- 2. Jones, C. J. Chem. Soc. Rev. 1998, 27, 289.
- 3. Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
- 4. (a) Northrop, B. H.; Zheng, Y.-R.; Chi, K.-W.; Stang, P. J. Acc. Chem. Res. 2009, 42, 1554 and references cited therein; (b) Han, Q.; Wang, L.-L.; Li, Q.-J.; Zhao, G.-Z.; He, J.; Hu, B.; Tan, H.; Abliz, Z.; Yu, Y.; Yang, H.-B. J. Org. Chem. 2012, 77, 3426 and references cited therein.
- Garrido Montalban, A.; Herrera, A. J.; Johannsen, J.; Beck, J.; Godet, T.; Vrettou, M.; White, A. J. P.; Williams, D. J. *Tetrahedron Lett.* 2002, 43, 1751 and references cited therein.
- Garrido Montalban, A.; Alonso, J.; White, J. P.; Williams, D. J. Tetrahedron Lett. 2010, 51, 5543.
- 7. Garrido Montalban, A.; Herrera, A. J.; Johannsen, J. Tetrahedron Lett. 2010, 51, 2917 and references cited therein.
- 8. Saha, M. L.; Bats, J. W.; Schmittel, M. Org. Biomol. Chem. 2013, 11, 5592 and references cited therein.
- 9. Brückner, C.; Sternberg, E. D.; Boyle, R. W.; Dolphin, D. *Chem. Commun.* 1997, 1689 and references cited therein.
- Chen, J.; Burghart, A.; Derecskei-Kovacs, A.; Burgess, K. J. Org. Chem. 2000, 65, 2900 and references cited therein.
- 11. Chandler, C. J.; Daday, L. W.; Reiss, J. A. J. Heterocycl. Chem. 1981, 18, 599.
- 12. Lash, T. D.; Bellettini, J. R.; Bastian, J. A.; Couch, K. B. Synthesis 1994, 170.
- 13. Sessler, J. L.; Mozaffari, A.; Johnson, M. R. Org. Synth. 1992, 70, 68.
- (a) Beer, G.; Niederalt, C.; Grimme, S.; Daub, J. Angew. Chem., Int. Ed. 2000, 39, 3252; (b) Burghart, A.; Thoresen, L. H.; Chen, J.; Burgess, K.; Bergström, F.; Johansson, L. B.-Å. Chem. Commun. 2000, 2203; (c) Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem., Int. Ed. 2001, 40, 385; (d) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 100.