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Abstract: Two complementary methods for catalytic intra-
molecular ketone alkylation reactions with unactivated olefins,
resulting in Conia-ene-type reactions, are reported. The trans-
formations are enabled by dual activation of both the ketone
and the olefin and are atom-economical as stoichiometric
oxidants or reductants are not required. Assisted by KoolÏs
aniline catalyst, the reaction conditions can be both pH- and
redox-neutral. A broad range of functional groups are thus
tolerated. Whereas the rhodium catalysts are effective for the
formation of five-membered rings, a ruthenium-based system
that affords the six-membered ring products was also devel-
oped.

Intramolecular ketone–olefin/alkyne couplings, namely the
Conia-ene reaction,[1] represent a powerful strategy for
constructing ring systems through C¢C bond formation,
particularly owing to the orthogonal reactivity of carbonyl
and alkenyl/alkynyl groups. With the advancement of p-acid
catalysis, a number of elegant approaches have been devel-
oped for alkyne-mediated couplings, particularly those
involving 1,3-dicarbonyl compounds.[2–5] In contrast, few
cyclization reactions of an unactivated alkene and a regular
ketone are known, which is likely due to the reduced
coordination ability of olefins (compared to alkynes) and
a poor enol/ketone ratio with normal ketones. The thermal
Conia-ene reaction typically requires very high temperatures
(300–400 88C), which limits the substrate scope and functional-
group tolerance.[1] To the best of our knowledge, only two
catalytic Conia-ene-type reactions involving simple ketone/
olefin substrates have been reported to date (Figure 1B).
Widenhoefer[6] and co-workers first developed a palladium-
catalyzed 6-endo-trig cyclization of g,d-enones for cyclohex-
anone synthesis; Che[7] et al. recently described a gold-
catalyzed intramolecular hydroalkylation of ketones with
aliphatic mono- and 1,1-disubstituted alkenes. While efficient,
both methods require strong Brønsted or Lewis acids for
ketone enolization, which potentially leads to incompatibility
with acid-sensitive functional groups. Furthermore, Conia-
ene-type cyclizations of aryl-substituted olefins have not been
reported to date.

To develop a broadly applicable intramolecular ketone–
olefin coupling that avoids extreme temperatures or strongly
acidic conditions, an alternative approach was sought without
relying on ketone enolization. Herein, efforts toward devel-
oping a catalytic Conia-ene-type reaction by dual activation
of the ketone and olefin are described. This approach is
expected to operate under nearly pH-neutral conditions
without stoichiometric oxidant or reductant, and should
thus be applicable to a broad substrate scope and benefit
from good functional-group compatibility.

Recently, we reported an intermolecular ketone a-alky-
lation reaction by coupling with simple olefins using a bifunc-
tional ligand (7-azaindoline) that is capable of forming an
enamine with the ketone and then directs Rh insertion into
the vinyl C¢H bond.[8] The alkylation shows complete
regioselectivity for unsymmetric ketones, occurring solely at
the less hindered site. Furthermore, only the anti-Markovni-
kov (linear) alkylation products were obtained with both
alkyl and aryl olefins. We hypothesized that this cooperative
activation mode[9] could be adopted for an intramolecular
C¢H/olefin cyclization,[10] enabling a chemoselective Conia-
ene-type transformation (Figure 1C). However, four obsta-

Figure 1. Intramolecular ketone alkylation with olefins. IPr = 1,3-bis(di-
isopropylphenyl)imidazolylidene.
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cles need to be overcome: 1) The reaction at the more
hindered site of the ketone, as required by the intramolecular
reaction, is difficult owing to an unfavorable steric interaction
between the metal and the b-substituent (opposite selectivity
to the intermolecular version); 2) the reactivity of non-
ethylene olefins could be an issue as they have shown low
reactivity in intermolecular settings; 3) the control of the
linear/branched regioselectivity is another concern; and
4) finding a mild way to form enamines with ketones that is
compatible with the alkylation conditions is nontrivial.
Hence, an efficient catalytic system had to be developed for
the intramolecular cyclization.

Cyclic ketone 1a was employed as the model substrate.
Initially, under the conditions that worked best for the
intermolecular reaction[8] (with IMes and 7-azaindoline as
the ligands), only 20% of the cyclized product (4a) was
obtained with approximately 35 % of the olefin-migration
side product 5 a. Interestingly, after carefully evaluating
several cocatalysts, the less hindered simple 2-aminopyridine
(2) was found to be more effective for this intramolecular
alkylation (Table 1).[11] Inspired by KoolÏs aniline-based
catalysts for hydrazone or oxime formation,[12] 5-methyl-2-
aminobenzoic acid (3) was used as the cocatalyst to facilitate
condensation of 2-aminopyridine with the ketone substrate.
After a survey of rhodium precatalysts, ligands, solvents, and
additives, fused ring 4 a was obtained in 74% yield (7:1 d.r.;
conditions A).[13] One key feature is that the reaction

conditions are both pH- and redox-neutral. In contrast to
the intermolecular reaction, complete selectivity for the
branched (Markovnikov addition) product was observed.
Moreover, no competitive activation of the ketone a-C¢C
bond was observed.[14]

To gain a better understanding of the reaction conditions,
a set of control experiments were carried out. Formation of
the bicyclic product was not observed without the Rh catalyst
or 2-aminopyridine (Table 1, entries 2 and 3). In the absence
of 5-methyl-2-aminobenzoic acid (3), 4a was formed in only
8% yield (entry 4). The product yield was slightly reduced
under anhydrous conditions or when [{Rh(coe)2Cl}2] and
PMePh2 were substituted by WilkinsonÏs catalyst (entries 5
and 6), although the exact reason is unclear. meta-Xylene
proved to be a better solvent than toluene and 1,4-dioxane
(entries 7 and 8). Interestingly, replacement of 2-aminopyr-
idine (2) with aniline alone or both aniline and pyridine only
provided a small amount of the cyclization product, confirm-
ing the important role of 2-aminopyridine in this trans-
formation (entries 9 and 10). Gratifyingly, the cyclization also
proceeds at lower temperature, for example, 110 88C, but it
then requires a longer reaction time (entry 11). The use of
a catalytic amount of 2 or 2.5 mol% of the rhodium dimer
proved less efficient (entries 12 and 13). During these studies,
a complementary set of reaction conditions (conditions B)
was also discovered; it involves the use of 2 (25 mol %),
TsOH·H2O (10 mol%), and WilkinsonÏs catalyst (10 mol%)
at 150 88C and provided 4a as a single diastereomer in
a comparable yield (entry 14). Substrate 1a could also be
cyclized in a cationic gold catalyzed process,[7] but a different
diastereomer was obtained as the major product.

The substrate scope was initially explored with different
ketones (Table 2). Whereas the reaction of cyclopentanone
1b under conditions A gave the corresponding product in
only 41 % yield, surprisingly, the use of bulkier 3-methyl-2-
aminopyridine provided 4 b in 71 % yield as a single diaste-
reomer (S,S,S), but the exact reason is unclear. Generally, for
ketones that are known to be less prone to enamine
formation, for example, linear, aryl, or medium-sized cyclic
ketones,[15] the conditions with TsOH·H2O (conditions B) led
to higher reactivity than conditions A. For example, whereas
cycloheptanone 1c gave product 4c in only 43 % yield under
conditions A (even at 150 88C), conditions B afforded the
product in 82 % yield. Moreover, low conversion (< 20%)
was observed for acyclic and aryl ketone substrates under
conditions A; however, under modified conditions B, the
desired cyclization products (4d and 4e) could be isolated
in synthetically useful yields. Cyclooctanone 1 f, a much more
challenging substrate, gave considerable olefin isomerization
with low conversion into the desired product even under
conditions B. Gratifyingly, the use of an electron-deficient
ligand, tris(3,5-di(trifluoromethyl)phenyl)phosphine
(30 mol %), along with [{Rh(coe)2Cl}2] (5 mol%) and AgPF6

(10 mol %), suppressed the olefin isomerization, and pro-
vided the desired 8,5-fused bicycle (4 f).[16]

The functional-group compatibility was first examined
with cyclohexanone-based substrates (Table 3). As expected,
owing to the pH/redox neutrality, a remarkable range of
functional groups, including benzyl ethers, esters, acetals, and

Table 1: Selected optimization studies.[a]

Entry Variations from “conditions A” 4a
[%][b]

d.r.
(4)

5a
[%][b]

1 – 74 (58)[c] 7:1 2
2 without [{Rh(coe)2Cl}2] – – –
3 without 2 – – 12
4 without 3 8 3:1 –
5 without H2O 61 6:1 –
6 [RhCl(PPh3)3] instead of [{Rh(coe)2Cl}2]

and PMePh2

56 6:1 7

7 toluene instead of m-xylene 56 6:1 7
8 1,4-dioxane instead of m-xylene 21 2.4:1 –
9 aniline instead of 2 10 1:1.4 –

10 aniline and pyridine instead of 2 6 2:1 –
11 110 88C for 5 days instead of 130 88C 64 (56)[c] 7:1 3
12 2 (25 mol%) and 3 (7 mol%) 38 3.3:1 3
13 [{Rh(coe)2Cl}2] (2.5 mol%) 26 5:1 –
14 [RhCl(PPh3)3] (10 mol%), TsOH·H2O

(10 mol%), 2 (25 mol%), m-xylene,
150 88C, 0.1m (conditions B)

66 (59) –[d] –

[a] All reactions were run on 0.1 mmol scale with 1.0 mL of the indicated
solvent. [b] Determined by 1H NMR spectroscopy using 1,2-tetra-
chloroethane as the internal standard. [c] Yield of the isolated major
diastereomer. [d] Single diastereomer. coe= cyclooctene.
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nitriles, are tolerated under conditions A. Acid-sensitive but
synthetically important functional groups, such as tert-butyl-
dimethylsilyl (TBS) ether (1 i), tert-butylcarbonate (OBoc)
(1k), para-methoxybenzyl (PMB) ether (1 l), and acetonide
(1o) moieties, survived reactions under these conditions,
which represents a significant advantage over p-acid-cata-
lyzed reactions.[6, 7]

Aside from aliphatic a-alkenes, aryl olefins (1p–1t),
known to be unstable under strongly acidic conditions,[17]

can also be used as the coupling partners in this dual-
activation approach (Table 4). Latent nucleophiles, such as
anisole and unprotected phenol substrates (1q and 1 r), are
well tolerated under both reaction conditions. It is not
surprising that driven by strain relief, C¢C activation of
cyclobutanone 1u occurred and provided bridged bicycle 4u
in 56% yield.[18] Furthermore, the Thorpe–Ingold effect was
found to be important for the success of the cyclization.
Cyclization with an alkyne moiety also proved to be
successful with this catalytic system, and the resulting b,g-
unsaturated imine underwent olefin migration to give con-
jugated ketone 4w upon hydrolysis [Eq. (1)].[19]

Whereas the current conditions can only be applied for
the formation of five-membered rings, after extensive inves-
tigation, a ruthenium-based system was discovered that
enables 6-exo-trig cyclizations with both cyclic and acyclic
ketones (Scheme 1a, b).[20] Remarkably, internal alkenes
(e.g., 1z and 1aa), unreactive in the presence of the Rh

Table 2: Ketone scope.[a]

[a] Yields of isolated products are given. [b] Yield of the major isomer.
[c] 2-Amino-3-methylpyridine (100 mol%) was used instead of 2. [d] 2-
Amino-3-methylpyridine (25 mol%) was used instead of 2. [e] 150 88C.
[f ] 2-Aminopyridine (100 mol%) and AgPF6 (10 mol%) were used. [g] 2
(100 mol%) was used. [h] [{Rh(coe)2Cl}2] (5 mol%), tris(3,5-di(tri-
fluoromethyl)phenyl)phosphine (30 mol%), and AgPF6 (10 mol%) were
used.

Table 3: Substrates with various functional groups.[a]

Substrate Conditions A Conditions B

1g (X = OBn) 47 % 69%[b]

1h (X = OAc) 55 %[c] 59%
1 i (X = OTBS) 69 %[d] 64%
1 j (X = OMOM) 67 %[c] 59%
1k (X = OBoc) 45 %[e] decomp.
1 l (X =OPMB) 53 %[c] decomp.

55 % 68%

73 % 71%[f ]

71 %
(6.5:1 d.r.)

12%

[a] Unless otherwise mentioned, all yields refer to the isolated major
isomer, and the reactions gave >10:1 d.r. [b] [{Rh(coe)2Cl}2] (5 mol%)
and tris(3,5-di(trifluoromethyl)phenyl)phosphine (30 mol%) instead of
[RhCl(PPh3)3] . [c] 3 days. [d] 4 days. [e] 110 88C, 5 days. [f ] Isolated after
hydrogenation of the reaction mixture using Pd/C and H2. MOM=me-
thoxymethyl.

Scheme 1. Ruthenium-catalyzed synthesis of six-membered rings.
TsOH =para-toluenesulfonic acid.
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catalysts, cyclized to give tricyclic rings in the presence of the
ruthenium catalyst (Scheme 1c,d). Nevertheless, the standard
substrate (1a) showed much higher reactivity with the Rh
than with the Ru system.

In conclusion, a catalytic intramolecular ketone–olefin
coupling has been developed by taking advantage of a unique
dual-activation mode. This approach is expected to be
complementary to previously developed processes, and
provides a broad implication for developing related trans-
formations beyond this work. Detailed mechanistic studies
and studies to further extend the applicability of the
ruthenium system are ongoing.
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