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ABSTRACT: We report a fluoride-initiated coupling reaction 
between trifluoromethylarenes and allylsilanes to access al-
lylated α,α-difluorobenzylic compounds. This method’s utili-
ty is demonstrated through a 30 mmol scale reaction, a se-
quential allylation/derivatization protocol and multiple ex-
amples of site-selective trifluoromethylarene allylation. Ini-
tial mechanistic studies suggest a base-induced single elec-
tron transfer pathway is responsible for the high efficiency 
and selectivity of this novel C–F substitution process. 

The α,α-difluorobenzylic substructure is becoming an in-
creasingly studied and valued motif in pharmaceutical and 
agrochemical applications.1 In addition to the general bene-
fits that benzylic fluorination can provide in medicinal chem-
istry, such as enhanced bioavailability, metabolic stability 
and lipophilicity, α,α-difluorobenzylic structures also serve as 
less-oxidizable bioisosteres of aryl ethers.2,3 As interest in this 
substructure has increased, so too has the need for more effi-
cient and versatile methods for its synthesis. Recent efforts 
have sought to develop alternatives to carbonyl deoxyfluori-
nation methodology that relies on stoichiometric use of 
highly reactive reagents (e.g. diethylaminosulfur trifluo-
ride).4 For example, benzylic difluorination reactions using 
electrophilic fluorine reagents have been reported.5 Mean-
while, substantial developments have been made using ar-
yldifluoromethyl- or difluoroalkyl-based coupling partners to 
assemble α,α-difluorobenzylic derivatives, primarily through 
cross-coupling or radical-based approaches.6-8  

An attractive alternative approach to α,α-difluorobenzylic 
compounds would be the direct coupling of reagents that do 
not require preparation of a difluorinated precursor. In this 
regard, we report the discovery and development of a cou-
pling reaction between allylsilanes and trifluoromethylarenes 
(Figure 1a). Initial observations suggest this reaction pro-
ceeds through a base-induced single electron transfer (SET) 
pathway, resulting in high monoselectivity to provide syn-
thetically versatile allylated products. 

The substitution of a single C–F bond in trifluoro-
methylarenes represents a rapid and modular route to α,α-

difluorobenzylic compounds.9 The potential benefits of such 
a process has attracted significant attention, although the 
high C–F bond strength (~115 kcal/mol for PhCF3) limits 
the activation strategies available for substitution.10 As each 
substitution occurs, the strength of the remaining C–F bonds 
continuously decreases (99 kcal/mol for PhCFH2), making 
monoselective substitution an exceedingly difficult pro-
cess.11,12     

 Figure 1. Motivation and background for the direct func-
tionalization of trifluoromethylarenes. 

There are three reported strategies for achieving monose-
lective C–C bond forming reactions of trifluoromethylarenes 
(Figure 1b). First, metal or electrochemical reductions have 
been used to generate aryldifluoromethyl anions that react 
with electrophiles, such as acetone.13 Second, photoredox-
catalyzed trifluoromethylarene reduction to access ar-
yldifluoromethyl radicals was recently discovered; addition 
of this intermediate to N-aryl acrylamides was reported by 
Gschwind and König, while the addition to unactivated al-
kenes was disclosed by Jui.14,15 Third, Yoshida and Hosoya 
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reported a method that involves fluoride transfer to an ortho-
silylium cation, resulting in an aryldifluoromethyl cation that 
reacts with nucleophilic species.16 

Our lab has been interested in using strong Brønsted bases 
as catalysts for new deprotonative functionalization reac-
tions.17 While investigating difluoromethylarene deprotona-
tion, we observed a defluoroallylation reaction when 1-
(difluoromethyl)-3-nitrobenzene (1) was mixed with al-
lyltrimethylsilane (2) in the presence of the organic super-
base P4-t-Bu (Scheme 1a).18 Given that P4-t-Bu can act as a 
strong Lewis base, we reasoned that this reaction may have 
been promoted via activation of allyltrimethylsilane.19,20 If 
this mechanism were operative, we hypothesized that 
defluoroallylation of trifluoromethylarenes may also occur to 
deliver allylated α,α-difluorobenzylic products. To examine 
this proposal, we used 1,3-bis(trifluoromethyl)benzene (4) 
as a model substrate for defluoroallylation (Scheme 1b).21 
Using P4-t-Bu in THF, we initially observed a 16% defluoro-
allylation yield of product 5. Further optimization led to 90% 
yield of 5 using 18-crown-6-ligated CsF (10 mol%) as an 
inexpensive and efficient promoter in 1,2-dimethoxyethane 
(DME). We note that the defluoroallylation yield decreases 
when allyl(methoxy)dimethylsilane (75% yield) or al-
lyl(dimethyl)phenylsilane (67% yield) are used as coupling 
partners, and that the reaction must be conducted under 
inert atmosphere. Details regarding solvent, temperature and 
fluoride source effects are provided in the Supporting Infor-
mation. 
Scheme 1. Discovery of a trifluoromethylarene defluoro-
allylation reaction.a 

 
aYields determined by 1H NMR spectroscopy. 

Table 1 shows a series of trifluoromethylarenes that un-
derwent monoselective allylation under the optimized reac-
tion conditions.22 We note that some allylated products were 
sensitive to purification23 and these products were isolated 
after in situ alkene hydrogenation or bromination (denoted 
as footnotes b and c in Table 1, respectively). A series of 1,3-
bis(trifluoromethyl)arenes underwent allylation of one tri-
fluoromethyl group in high yield (6-9). Other electron-
deficient trifluoromethylarenes featuring sulfonamide (10), 
cyano (11) and phosphonate (12) substituents also provid-

ed high yields. Heterocyclic substrates were similarly effec-
tive, including a benzo[c]-1,2,5-thiadiazole (13) and 3-
(trifluoromethyl)pyridine variants featuring methoxy (14), 
phenyl (16), benzyloxy (17) and pyrrolidino (18) substitu-
ents. Notably, 2-chloro-5-(trifluoromethyl)-pyridine (15) 
underwent defluoroallylation while avoiding chloride dis-
placement by fluoride. A 1,3-bis(trifluoromethyl)aryl-
containing substructure of the drug aprepitant was also al-
lylated in 72% yield (19). 

 
Table 1. Substrate scope for trifluoromethylarene allylation.a 

 
aYields are of purified product; bIsolated yield of saturated 
product following in situ alkene hydrogenation using Schwartz’s 
reagent; cProduct isolated as dibrominated adduct; d48 h reac-
tion time; eDMSO as solvent; see Supporting Information for 
details. 

Use of 2-substituted allyltrimethylsilanes yielded disubsti-
tuted alkene products 20 and 21 in good yield. Meanwhile, 
unsymmetrical allylsilanes led to regioisomeric mixtures of 
products; for example, 3,3-dimethylallyltrimethylsilane led 

H
FF P4-t-Bu

(10 mol%) H
F

SiMe3
DMSO, N2
80 °C, 12 h

+

(a) An initial unexpected observation of a defluoroallylation reaction

1 (1 equiv) 2 (2.5 equiv) 3, 24% yield

O2N O2N

(b) Optimization of a trifluoromethylarene defluoroallylation reaction

F
FF promoter

(10 mol%)
FF

SiMe3
solvent, N2
80 °C, 15 h

+

4 (1 equiv) 2 (2 equiv) 5

F3C F3C

promoter: P4-t-Bu in THF, 16% yield CsF + 18-crown-6 in DME, 90% yield

SiMe3+

CsF (10 mol%)
18-crown-6 (30 mol%)

DME, 80 °C, N2, 15 h
Ar

FF

monoselective allylation(2-4 equiv)(1 equiv)

N

F F

17, 52% yield

OBn

F3C
F F

F3C
F F

OMe O

6, 85% yieldb 7, 91% yieldb

F3C
F F

Ph

8, 87% yieldb

F3C
F F

NMePh
9, 43% yield

F F
SMe2N

OO

10, 60% yieldc

F F
P

12, 71% yieldd

O
EtO

EtO

F F
NC

11, 79% yield

Ph

13, 54% yieldc

N

F F

MeO
14, 64% yield

N

F F

Cl

15, 44% yieldc

N

F F

18, 38% yield

N

N

F F

Ph

16, 82% yieldb

CF3

O

Me

N
O

Bn

F
FF

19, 72% yieldd

N

F F

20, 58% yield

OBn

Me F F

21, 74% yield

OAc

R R

Ph

NC

F F
N

S
N

N

F F

OBn Me

Me

22, 65% yielde

(4:1 regioselectivity)

allylated
aprepitant
precursor

Ar F
FF

Page 2 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

to 65% substitution yield favoring the trisubstituted alkene in 
a 4:1 ratio to the terminal alkene (22).24 

To demonstrate the utility of this method, we first per-
formed the allylation of trifluoromethylarene 23 on a prepar-
ative scale (30 mmol) to provide 6.5 g of product 11 (81% 
yield, equation 1). 

 

 
 

Next, we developed a sequential allylation/derivatization 
protocol as a modular approach to arenes with diverse 
difluoroalkyl substituents. This process involved only a single 
isolation step and the overall yields with respect to the tri-
fluoromethylarene reactant are shown in Scheme 2. Standard 
olefin manipulations provided terminal alcohol and alkyl 
iodide products (24, 25 and 27), while a Heck-coupling re-
action yielded a phenyl-substituted allylated product (26). 
Alkene hydrozirconation followed by C–C bond forming 
reactions provided ketone- (28) and alkene-containing (29) 
products.25 Many further applications of this derivatization 
strategy can be envisioned. 
Scheme 2. Demonstration of one-pot allyla-
tion/derivatization processes.a 

 
aIsolated yield starting from trifluoromethylarene using 

defluoroallylation conditions from Table 1, followed by: b9-
BBN, THF, rt; H2O2, NaOH; c(C5H5)2ZrHCl, DCM, rt; I2; 
dPhI, Pd(OAc)2, PPh3, K2CO3, DMF, 100 °C; eO3, MeOH, -78 
°C; NaBH4; f(C5H5)2ZrHCl, THF, rt; CuCN, 2-cyclohexen-1-
one; g(C5H5)2ZrHCl, THF, rt; CuCN, 2,3-dibromopropene; 
see Supporting Information for full details.  

The following observations and precedents suggest an al-
lylation mechanism involving a SET pathway (Figure 2a). 
First, the scope of effective trifluoromethylarene substrates 
in Table 1 share electronic similarities to those reported by 
Jui in 201814b, in which photoredox-catalyzed SET to a tri-

fluoromethylarene leads to mesolytic cleavage, generating an 
α,α-difluorobenzylic radical.26,27 Second, C–Si σ-bonds are 
well-known to activate adjacent π-electrons toward single 
electron oxidation, an effect enhanced by Lewis base coordi-
nation.28-30 Third, fluoride-initiated allylation reactions in-
volving allyltrimethylsilane have been proposed to proceed 
through pentacoordinate and hexacoordinate silicate inter-
mediates, as well as discrete allyl anion species.20,31 Based on 
this analysis, we speculate that an anionic allylic intermediate 
participates in SET to the trifluoromethylarene, generating 
an α,α-difluorobenzylic radical that reacts with an allyl radical 
equivalent through either a recombination or a chain pro-
cess.32,33 It is likely that the fluoride anion expelled from the 
trifluoromethylarene can activate another equivalent of al-
lyltrimethylsilane. The absence of multiallylation products is 
consistent with a SET mechanism as reduction of the 
monodefluoroallylation product is more difficult than the 
trifluoromethylarene.26  

 

Figure 2. Proposed reaction pathway and experimental studies 
that led to site-selective defluoroallylation reactions. aIsolated 
yields using conditions shown in Table 1; see Supporting In-
formation for details. 

When 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) 
was added to a standard allylation reaction of 1,3-
bis(trifluoromethyl)benzene (4), a 23% yield of allylated-
TEMPO adduct 30 was observed (Figure 2b).34 Control 
experiments showed that this adduct is not formed in the 
absence of a trifluoromethylarene from Table 1.35 These ob-
servations are consistent with an allyl radical species that is 
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generated only in the presence of a suitable trifluoro-
methylarene substrate. We have performed further control 
studies that demonstrate light is not required for defluoroal-
lylation to occur. The exact nature of the intermediates in-
volved in this reaction and how they ultimately couple to 
each other remains the subject of ongoing studies. 

Based on our current mechanistic hypothesis, we reasoned 
that site-selective defluoroallylation could be accomplished 
on substrates that contain multiple trifluoromethyl groups. 
Thus, complex structures with differentiated trifluoromethyl 
groups on multiple arenes (31 and 33) were selectively al-
lylated in high yields (Figure 2c). Selectivity for trifluoro-
methylarene allylation was also observed over alkyl-
substituted trifluoromethyl groups (32). 

 We expect this methodology to provide an attractive route 
to diverse α,α-difluorobenzylic compounds given the overall 
selectivity, practicality and scope of the defluoroallylation 
reaction. Further mechanistic studies are ongoing to improve 
this method and generalize this approach to other novel 
coupling reactions. 
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