STUDIES DIRECTED TOWARD THE SYNTHESIS OF MARTINELLINES : ONE POT SYNTHESIS OF PYRROLOQUINOLONE RING SYSTEM

Mukund K Gurjar*, Shashwati Pal, and A V Rama Rao

Indian Institute of Chemical Technology, Hyderabad 500 007, India

Abstract

The Pd-catalysed coupling between aryl iodides and 3-carbethoxy- 4,5-dihydropyrroles has been described. With ortho-iodoanilines, tandem cyclisation leading to pyrroloquinolones present in martinellines, was observed.

Recently isolated ${ }^{1}$ new alkaloids martinelline (1) and martinellic acid (2), from the roots of tropical plant Martinella iquitosensis, possess potent Bradykinin (BK) B_{1} ad B_{2} receptor antagonist activity. 1 and $\mathbf{2}$ are the only nonpeptide BK antagonists reported so far. More importantly, $\mathbf{1}$ and $\mathbf{2}$ are characterised by the presence of unknown pyrroloquinoline skeleton which has not been observed so far in naturally occurring compounds.

$2 \mathrm{~A}=\mathrm{H}$

4

3

These features prompted us to device a potential general strategy to construct the new tricyclic pyrroloquinoline ring system based on Heck reaction. ${ }^{2}$ This communication describes the Pd-catalysed arylation of N -substituted 3-carbethoxy-4,5-dihydropyrrole (4) to efficiently obtain pyrroloquinolone derivatives ($\mathbf{3}$),
The synthesis of $\mathbf{4}$ was initiated from 2-aminoethanol (5) which was protected as the N -BOC derivative
and then subjected to the treatment ${ }^{3}$ with a mixture of $\mathrm{PPh}_{3}-\mathrm{CCl}_{4}-\mathrm{Et}_{3} \mathrm{~N}$ in MeCN at room temperature to furnish the aziridine derivative (7) in 82% yield (Scheme 1). Subsequently, 7 was treated ${ }^{4}$ with sodium

Scheme 1

i) (Boc) $)_{2} \mathrm{O}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$, room temperature, 2 h ; ii) $\mathrm{PPh}_{3}, \mathrm{CCl}_{4}, \mathrm{Et}_{3} \mathrm{~N}$, MeCN , room temperature, 12 h ; iii) $\mathrm{NaH}, \mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$, THF, reflux, 7 h ; iv) NaBH_{4}, $\mathrm{MeOH},-40^{\circ}$, $30 \mathrm{~min} ; \mathrm{v}) \mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, room temperature, 2 h .
salt of diethyl malonate in refluxing THF to obtain the pyrrolidone derivative (8) in 73% yield. In order to effect unsaturation, compound (8) was partially reduced with $\mathrm{NaBH}_{4}-\mathrm{MeOH}$ at $-40^{\circ} \mathrm{C}$ and the corresponding hemiaminal intermediate (9) was immediately reacted with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to give 4,5 -dihydropyrrole ($\mathbf{4 a}, \mathrm{R}=t-\mathrm{Bu}$) in 60% yield. Similarly, compound ($\mathbf{4 b}$) ($\mathrm{R}=\mathrm{Et}$) was prepared and structures of both these products were confirmed by ${ }^{1} \mathrm{H}-\mathrm{nmr}{ }^{5}$ and mass spectral data. ${ }^{6} \mathrm{We}$ next examined the Pd-catalysed arylation reaction of $\mathbf{4 a} / \mathbf{b}$ to establish optimum conditions for this reaction.

Scheme 2

i) $\mathbf{P d}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Bu}_{3} \mathrm{~N}, \mathrm{MeCN}$, reflux, 24 h ; ii) $\mathbf{1 0 \%} \mathrm{Pd}-\mathrm{C}, \mathbf{M e O H}, \mathrm{H}_{2}$, room temperature, 12 h .
After several conditions tried we concluded that $\mathrm{Pd}(\mathrm{OAc})_{2}$ in refluxing MeCN with PPh_{3} and $\mathrm{Bu}_{3} \mathrm{~N}$ as promoters gave satisfactory yields. For instance, iodobenzene (10) (1.0 mmol), and $\mathbf{4 a} / \mathbf{b}(1.2 \mathrm{mmol})$ were heated under reflux with $\mathrm{Pd}(\mathrm{OAc})_{2}(0.2 \mathrm{mmol}), \mathrm{PPh}_{3}(0.4 \mathrm{mmol})$, and $\mathrm{Bu}_{3} \mathrm{~N}(1.0 \mathrm{mmol})$ in MeCN for 24 h to give the coupled product (13/14) in $80-85 \%$ yield. The structures of $\mathbf{1 3 / 1 4}$ were supported by
${ }^{1} \mathrm{H}-\mathrm{nmr}$ and mass spectral data. The benzylic protons of $13 / 14$ were distinctly located in their $1 \mathrm{H}-\mathrm{nmr}$ spectrum thereby omitting the regiomeric structure (18). The identification of these structures led to an interesting observation in which the less stable non-aromatic ring system (13/14) was preferred over perfectly stable aromatic ring system (18). The possibility of initial formation of $\mathbf{1 8}$ followed by isomerisation to $13 / 14$ was rather remote (Scheme 2). Similarly compounds 15 and 16 were prepared from 2-nitro-iodobenzene (11) and 2-methyl-iodobenzene (12) respectively.

Scheme 3

Alternatively, an explanation for obtaining (13-16) based on mechanistic consideration of the Heck reaction was sought. ${ }^{7}$ For instance, in the second step of the reaction (Scheme 3), the aryl palladium halide adds to the double bond in a syn fashion rendering the benzylic hydrogen and palladium halide groups anti to each other. The final and the preferred syn elimination of hydridopalladium halide occurs, as indicated, to provide 13-16 as sole products.

Scheme 4

i) $\mathbf{P d}(\mathbf{O A c})_{2}, \mathrm{PPh}_{3}, \mathrm{Bu}_{3} \mathrm{~N}, \mathrm{MeCN}$, reflux , 24 h ; ii) $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, \mathrm{H}_{2}$, room temperature, 12 h .
In view of the above results we also examined the Pd-catalysed reaction between $\mathbf{4 a / b}$ with orthoiodoanilines (19 and 20) (Scheme 4). As expected the C-C bond formation was accompanied with the tandem cyclisation between amine and carbethoxy group leading to the formation of tricyclic compounds (21-23) in 41-47 \% yield. Compounds (21 and 23) were hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}$ at room temperature and 1 atm pressure to give pyrroloquinolone derivatives (24) and (25). The stereochemistry at the ring junction of 24 was confirmed as cis by the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum. The doublet due to benzylic proton appeared at $\delta 5.26$ with characteristic coupling constant $(\mathrm{J}=6.8 \mathrm{~Hz})$ for cis geometry. This J value was consistent with the datal ${ }^{1}$ for the natural products. The above methodology thus offers a fascinating direct entry to pyrroloquinoline system.

REFERENCES AND NOTES

1. K.M. Witherup, R.W. Ransom, A.C. Graham, A.M. Bernard, M.J. Salvatore, W.C. Lumma, P.S. Anderson, S.M. Pitzenberger, and S.L. Varga, J. Am. Chem. Soc., 1995, 117, 6682.
2. a) S.A. Godliski, Comprehensive Organic Synthesis, ed. by B.M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, Vol., 4, p. 585; ed. by R.F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, London, 1985; b) R.F. Heck, Organic Reactions, 1982, 27, 345; c) A.M. Rouchi, Chem. Engg. News, (June 1), 1995, 32; J. Tsuji, Organic Synthesis with Palladium Compounds, Springer-Verlag, 1980; J. Tsuji, Synthesis, 1990, 739.
3. R. Appel and R. Kleinstuck, Chem. Ber., 1974, 107, 1075.
4. H. Stamm, Chem. Ber., 1966, 99, 2556.
5. ${ }^{1} \mathrm{H}-\mathrm{Nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and mass spectral data of some selected compounds : Compound (8) : δ $1.29(\mathrm{t}, 3 \mathrm{H}, J=8.3 \mathrm{~Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.10-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.65(\mathrm{~m}$, $1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz})$; Compound (4b) : $\delta 1.25(\mathrm{~m}, 6 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 3.82(\mathrm{t}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.11(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; \mathrm{ms}-213\left(\mathrm{M}^{+}\right)$; Compound (13) : $\delta 1.01(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 7.04$ $(\mathrm{m}, 5 \mathrm{H}), \mathrm{mp} \mathrm{102-103}{ }^{\circ} \mathrm{C}$; Compound (14) : $\delta 1.01-1.32(\mathrm{~m}, 6 \mathrm{H}), 3.90-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~m}$, $1 \mathrm{H}), 5.58-5.72(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H}), \mathrm{ms}-289(\mathrm{M}+)$; Compound (16) : $\delta 1.13(\mathrm{~s}$, $9 \mathrm{H}), 1.17(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.04$ $(\mathrm{m}, 4 \mathrm{H}), \mathrm{mp} 90-91^{\circ} \mathrm{C}$; Compound (22) : $\delta 1.25(\mathrm{~m}, 3 \mathrm{H}), 4.22(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.95(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $7.37(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, CI-ms $-258(\mathrm{M}+$); Compound (24): $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.14(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 6.98(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 9.13(\mathrm{~s}$, 1 H), CI-ms - $289\left(\mathrm{M}^{+}+1\right)$, mp $150-151^{\circ} \mathrm{C}$; Compound (25): $\delta 1.55(\mathrm{~s}, 9 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.38$ $(\mathrm{m}, 1 \mathrm{H}), 3.11-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$, $7.91(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), \mathrm{CI}-\mathrm{ms}-347\left(\mathrm{M}^{+}+1\right)$, mp $225-226^{\circ} \mathrm{C}$.
6. All the new compounds have satisfactory analysis by high resolution mass spectrum.
7. Ref. 2a, p. 833.
