Saud I. Al-Resayes, Stanlei I. Klein, Harold W. Kroto, Mohamed F. Meidine, and John F. Nixon* School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J, U.K.

Differing modes of co-ordination are reported for complexes of platinum(0) containing the phospha-alkene $P(\text{mesityl})=CPh_2$, *e.g.* in $Pt(\text{triphos})\{P(\text{mesityl})=CPh_2\}$, [triphos = $(PPh_2CH_2)_3CMe$], the phospha-alkene is η^2 -bonded to the metal whereas in $Pt\{P(\text{mesityl})=CPh_2\}_3$ and $Pt\{P(\text{mesityl})=CPh_2\}_2(P\equiv CBu^t)$ it is η^1 -co-ordinated and the last two complexes are the first isolated compounds containing only phospha-alkene or phospha-alkyne ligands.

The chemistry of the novel phospha-alkenes RP=CR¹₂, and phospha-alkynes, RC=P, containing $2p_{\pi}-3p_{\pi}$ bonds is of current interest.^{1,2} Recent MO calculations,^{3,4} suggest that the highest occupied molecular orbital in CH₂=PH is of the π type with the phosphorus lone pair σ -orbital only slightly more stable while the π^* LUMO is relatively low lying. He I photoelectron spectroscopic studies on a variety of RC=P molecules^{5,6} indicate that the HOMO is also of the π -type and the $\pi-\sigma$ separation is much greater than that found in the analogous RC=N systems.

In principle therefore it might be expected that phosphaalkenes are likely to act as both η^1 -phosphorus donors and η^2 -P=C π -donors towards transition metals whereas phosphaalkynes are likely to behave as η^2 -donors. Previously we and others established the η^1 -bonding type for the phospha-alkene P(mesityl)=CPh₂ in single crystal X-ray studies on cis-PtCl₂-(PEt₃){P(mesityl)=CPh₂}, Cr(CO)₅ {P(mesityl)=CPh₂}, and Pt(PPh₃)₂ {P(mesityl)=CPh₂}. The latter complex showed a solution n.m.r. spectrum which also supported the possible existence of an η^2 -isomer.

We now describe the synthesis of an η^2 -phospha-alkene com-

Scheme 1. i, $P(mesityl)=CPh_2$; ii, $P=CBu^t$; R = mesityl.

plex Pt(triphos){P(mesityl)=CPh₂} (1), [triphos = (PPh₂CH₂)₃-CMe] formed unexpectedly in the displacement reaction of PPh₃ from Pt(PPh₃)(triphos) (see Scheme 1). The η^2 -phosphaalkyne complex Pt(triphos)(P=CBu^t) (2) was formed in a similar way.

Both (1) and (2) show the characteristic ³¹P {¹H} n.m.r. spectrum expected for an [ABM] spin system (A and B represent ³¹P nuclei of the co-ordinated triphos, M the unique co-ordinated phosphorus of the η^2 -phospha-alkene or phospha-alkyne) each line exhibiting the expected satellites due to coupling from the ¹⁹⁵Pt nucleus. In addition a singlet is observed for the non-co-ordinated phosphorus of the triphos ligand.[†]

The ${}^{31}P{}^{1}H{}$ n.m.r. spectrum of (1) is more complex than that of (2) which is shown in Figure 1 because of the existence of two isomers of (1) which arise from the different orientations of the phosphorus lone pair of the phospha-alkene. The ${}^{195}Pt$ n.m.r. spectrum of (1) (Figure 2) confirms the presence of the isomeric mixture and consists of two sets of eight lines of equal intensity.

The η^2 -mode of co-ordination of both (1) and (2) is unambiguously established by the unusually small values of ¹J(Pt,P) for the co-ordinated phospha-alkene and phosphaalkyne (467, 455; and 144 Hz, respectively). The very low values reflect the large s-character of the phosphorus lone pair of the phospha-alkene and phospha-alkyne which is directed away from the metal atom in (1) and (2) and a similar effect was noted by us¹⁰ in the η^2 -Pt(PPh₃)(P=CBu^t) complex.

In contrast to the above, treatment of $Pt(cod)_2$ (cod = 1,5cyclo-octadiene), with $P(mesityl)=CPh_2$ gave the η^1 -complex Pt { $P(mesityl)=CPh_2$ }₃ (3), (Scheme 2) as evidence by ³¹P and ¹⁹⁵Pt n.m.r. spectroscopy, the latter showing a widely spaced 1-3-3-1 quartet [¹J(Pt,P) 4946 Hz].† Likewise when a 2:1 mixture of P(mesityl)=CPh_2 and P=CBu^t reacted with Pt(cod)_2 the product was Pt { $P(mesityl)=CPh_2$ }₂(P=CBu^t) (4) which is an interesting example of a complex containing only ligated

J. CHEM. SOC., CHEM. COMMUN., 1983

930

[†] N.m.r. data for (1): ³¹P, δ –137.6 (P_A), –139.6 (P_B), –184.1 (P_X), –168.1 p.p.m. (P_C); ²J(P_A,P_B) 20, ²J(P_B,P_C) 12, ²J(P_A,P_C) 57 Hz; ¹⁸⁵Pt, δ –460.0 p.p.m. [isomer (a)]; ¹J(Pt,P_A) 3141, ¹J(Pt,P_B) 3014, ¹J(Pt,P_X) 467 Hz; δ –440.7 p.p.m. [isomer (b)]; ¹J(Pt,P_A) 3103, ¹J(Pt,P_B) 2986, ¹J(Pt,P_X) 455 Hz. For (2): ³¹P, δ –134.8 (P_A), –136.6 (P_B), –58.7 (P_X), –168.7 p.p.m. (P_C); ¹J-(Pt,P_A) 3381, ¹J(Pt,P_B) 2986, ¹J(Pt,P_X) 144 Hz; ²J(P_A,P_B) = ²J(P_B,P_X) = ²J(P_A,P_X) = 22 Hz. For (3): ³¹P {¹H} (250 K), δ 85.6 p.p.m. [s with Pt satellites, ¹J(Pt,P) 4951 Hz]; ¹⁹⁵Pt {¹H} (253 K) δ 521.8, 457.5, 393.2, and 329.1 p.p.m. [1:3:3:1 q, ¹J(Pt,P) 4954 Hz]. For (4): ³¹P, δ 62.1 (P_A), 61.1 (P_B), –101.9 (P_X); ¹J(Pt,P_A) 4048, ¹J(Pt,P_B) 3438, ¹J(Pt,P_X) 115 Hz; ²J(P_A,P_B) = ²J(P_A,P_X) = 12, ²J(P_B,P_X) II Hz. (³¹P Shifts are relative to trimethyl phosphite, ¹⁹⁵Pt shifts relative to the standard in ref. 12.)

931

Figure 2.195Pt N.m.r. spectrum for compound (1); * and ‡ indicate isomers (b) and (a) respectively.

phospha-alkenes (η^1 -) and a phospha-alkyne (η^2 -) (see Figure 3.)† Clearly a delicate balance of factors can result in either η^1 - or η^2 -co-ordination of the phospha-alkene.

Finally it is interesting to compare the variation in the magnitude of ${}^{1}J(Pt,P)$ for the η^{2} -co-ordinated $P=CBu^{t}$ in $Pt(PPh_{3})_{2}(P=CBu^{t})$ (62 Hz),¹⁰ with (4) (115 Hz) and (2) (144 Hz), since these changes must reflect mainly s-character and electron density differences of the platinum.¹¹

The increased s-character of the formally sp²-hybridised phosphorus in P(mesityl)=CPh₂ and the very small bite (P-Pt-P bond angles typically = $ca. 94^{\circ}$)¹² of the triphos ligand which diverts more s-character to the platinum hybrid orbital are probably responsible for the larger ¹J(Pt,P) values found in (2) and (4).

We thank the S.E.R.C. for financial support (to M. M.) and the Brazilian Government CNPq and the Saudi Arabian

δ/p.p.m.

Figure 3. ³¹P {¹H } N.m.r. spectrum for compound (4).

Government for scholarships (to S. I. K. and S. I. A., respectively).

Received, 3rd May 1983; Com. 548

References

- 1 R. Appel, F. Knoll, and I. Ruppert, Angew Chem., Int. Ed. Engl., 1981, 20, 731, and references therein. 2 H. W. Kroto and J. F. Nixon, ACS Symposium Series No.
- 171, Phosphorus Chemistry, 1981, 383.
- 3 C. Thomson, J. Chem. Soc., Chem. Commun., 1977, 322.
- 4 W. W. Schoeller and E. Niecke, J. Chem. Soc., Chem. Commun., 1982, 569. 5 J. C. T. R. Burckett St. Laurent, M. A. King, H. W. Kroto,
- J. F. Nixon, and R. J. Suffolk, J. Chem. Soc., Dalton Trans., 1983, 755.

- 6 B. Solouki, H. Bock, R. Appel, A. Westerhaus, G. Becker, and G. Uhl, Chem. Ber., 1982, 115, 3747.
- 7 H. W. Kroto, J. F. Nixon, M. J. Taylor, A. A. Frew, and K. W. Muir, Polyhedron, 1982, 1, 89.
- 8 T. C. Klebach, R. Lourenr, F. Bickelhaupt, C. H. Stam, and A. Van Herk, J. Organomet. Chem., 1982, 210, 211.
- 9 Th. A. van der Knaap, F. Bickelhaupt, H. van der Poel, G. van Koten, and C. H. Stam, J. Am. Chem. Soc., 1982, 104, 1756.
- 10 J. C. T. R. Burckett St. Laurent, P. B. Hitchcock, H. W. Kroto, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1981, 1141.
- 11 J. F. Nixon and A. Pidcock, Ann. Rep. N.M.R. Spectrosc., 1969, 2, 345.
- 12 J. Chatt, R. Mason, and D. W. Meek, J. Am. Chem. Soc., 1975, 97, 3827.