

pubs.acs.org/OrgLett

A Photocatalytic Regioselective Direct Hydroaminoalkylation of Aryl-Substituted Alkenes with Amines

Natalia A. Larionova, Jun Miyatake Ondozabal, Emily G. Smith, and Xacobe C. Cambeiro*

ACCESS

III Metrics & More

ABSTRACT: A photocatalytic method for the α -selective hydroaminoalkylation of cinnamate esters has been developed. The reaction involves the regioselective addition of α -aminoalkyl radicals generated from aniline derivatives or aliphatic amines to the α -position of unsaturated esters. The scope of aromatic alkenes was extended to styrenes undergoing hydroaminoalkylation with anti-Markovnikov selectivity, which confirms the importance of the aromatic group at the β -position. Simple scale-up is demonstrated under continuous flow conditions, highlighting the practicality of the method.

P hotocatalytic hydroaminoalkylation of electron-poor alkenes has been developed throughout the past decade^{1,2} taking advantage of the nucleophilic character of α -aminoalkyl radicals.³ Thus, radicals generated by visible light photooxidation of tertiary amines⁴ have been shown to engage in conjugate addition with a variety of Michael acceptors such as maleimides,⁵ alkylidene malonates and malononitriles,⁶ α , β unsaturated carbonyl compounds,⁷ amides⁸ and esters,⁹ as well as alkenylpyridine derivatives.¹⁰ In addition, photocatalytic conjugate additions¹¹ have been described with α -aminoalkyl radicals generated by different methods, such as oxidative desilylation¹² or decarboxylation,¹³ among others.¹⁴

These transformations proceed generally with high regioselectivity for the β -position with respect to the electronwithdrawing group (EWG) (Figure 1a), consistent with an early transition state governed by the SOMO-LUMO interaction. As a remarkable exception, Sparling observed α selectivity in a photocatalytic decarboxylative radical addition to β -aryl α , β -unsaturated amides (Figure 1b).¹⁵ The unusual selectivity in this case was attributed to a reversible radical addition, giving place under thermodynamic control to the more stable benzylic radical. However, this method was limited to decarboxylative generation of the α -aminoalkyl radical from α -amino acid substrates, which required a strongly oxidizing catalyst for decarboxylation.¹⁶

A method for the direct α -selective aminoalkylation of α,β unsaturated carboxylic acid derivatives would provide a practical, straightforward route for the preparation of β amino acids, potentially enabling access to substitution patterns (β^2 and $\beta^{2,3}$) which are not easily accessible through more established routes.¹⁷ Alternative photocatalytic methods for the preparation of β -amino carbonyl compounds from

Figure 1. Summary of hydroaminoalkylation of electron-poor alkenes and related transformations.

amines have been reported, based on Mannich-type reactions of photocatalytically generated iminium ions with silyl enol ethers¹⁸ or with enamines generated *in situ* using enamine

Received: May 21, 2021 **Published:** July 1, 2021

Scheme 1. Hydroaminomethylation of Electron-Poor Alkenes (1) with N,N-Dimethylaniline $(2a)^a$

^{*a*}Reactions carried out with 1 (0.2 mmol), 2a (1.5 equiv), $[Ir(ppy)_2(dtbbyy)]PF_6$ (1 mol %), and Cs_2CO_3 (20 mol %) in MeCN (2 mL), under blue light irradiation for 16 h while controlling the temperature at 25 °C. Yields are of isolated product unless otherwise noted. Numbers in brackets are α to β ratio determined by ¹H NMR of the crude reaction mixture. ^{*b*}The ethyl ester was used in this case instead of methyl. ^cStarting material was the Z-alkene. ^dYield determined by ¹H NMR using an internal standard.

catalysis (Figure 1b).¹⁹ However, these methods are limited to tetrahydroisoquinoline derivatives as the amine partner. A similar strategy for α -olefination of amines is similarly restricted to tetrahydroisoquinoline and tetrahydro- β -carbolines.²⁰

In contrast with the well-established Giese-type addition to electron-poor alkenes, efficient photocatalytic hydroaminoalkylation of less polarized alkenes has not been reported to date.²¹ This is possibly a consequence of poor chemoselectivity in the absence of a good matching of the nucleophilic radical with an electrophilic alkene, giving place to polymerization side-reactions.²²

During our recent investigation on photocatalytic transfer hydrogenation of cinnamate derivatives we found a kinetic preference for attack at the α -position in a H atom transfer from a Hantzsch ester radical cation to the alkene.²³ Here we report a photocatalytic method for the α -selective hydroaminoalkylation of cinnamate esters based on the regioselective addition of α -aminoalkyl radicals, where the reaction is controlled by the presence of an aromatic group at the β position. Moreover, our method is valid for the direct hydroaminoalkylation of styrenes, which proceeds with high anti-Markovnikov selectivity (Figure 1c).

Irradiation with blue light of a MeCN solution of cinnamate ester **1a** and dimethylaniline **2a** (1.5 equiv) in the presence of photocatalyst [Ir(ppy)₂(dtbbyy)]PF₆ (1 mol %) and Cs₂CO₃ (20 mol %) resulted in quantitative formation of β -amino ester **3aa** and its γ -isomer in a 3:1 ratio (Scheme 1), reflecting a preference for α -addition of the aminoalkyl radical. The use of the organic, soluble base DBU provided results comparable to Cs₂CO₃, as did the use of increased loadings of base. Other modifications to the reaction conditions resulted generally in decreased yields (see Supporting Information (SI) section 1.4 for additional details).

Letter

To determine the scope of the reaction we first applied it to a range of cinnamate derivatives (Scheme 1). We probed the effect of introducing an electron-donating or electron-withdrawing substituent on the different positions of the aryl ring. Namely, OMe and CF₃ were well tolerated in all cases, leading to good yields of products 3ba-da and 3ea-ga, respectively. Although the α -substitution product was favored in all cases, CF₃-substituted substrates led to significantly increased regioselectivities. In both cases the position of substitution had no apparent effect on the reaction, suggesting that steric hindrance was not very relevant. Consistently, ortho-Mesubstituted product 3ha was also readily formed. F, Cl, and Br were tolerated as well and led to increased regioselectivities compared to 3aa. These halogen substituents provide useful handles for further functionalization of the products through metal-catalyzed cross-couplings or photocatalytic transformations.²⁴ Similarly, the reaction was compatible with the presence of several functional groups such as acetal-protected aldehyde (3na), benzylic alcohol (3oa), tertiary (3pa), and even secondary amine (3qa). Finally, the reaction worked in the presence of a dimethylallyl or an allyloxy substituent, leading to formation of products 3ra and 3sa (starting from the Z-cinnamate) with no detectable reaction on the allyl groups. This suggests that the radical formed after addition rapidly reacts further to provide compound 3.²⁵

Cinnamonitrile was also a valid substrate for the reaction, although the corresponding product **3ta** was obtained with very poor regioselectivity against its β -addition analogue (1.3:1). Product **3ua**, conversely, was obtained with complete regioselectivity from the corresponding tetrasubstituted alkene. A cyclic α,β -unsaturated ester, coumarin, was transformed to

5384

3va regioselectively albeit in very low yield (10%), and 2styrylpyridine gave **3wa** in low yield and selectivity, with a slight preference for the β -addition product (28%, 1:1.6). Finally, an α , β -unsaturated ester bearing only an aliphatic substituent reacted to give exclusively the β -addition product **3xa'**. More electron-poor substrates such as ketones (e.g., **3ya'**), although generally compatible with the reaction, tended to give β -addition as the major product.

^{*a*}0.2 mmol of **2** and 3 equiv of **1a** were used. ^{*b*}Product was obtained as a mixture of diastereoisomers (see SI). ^{*c*}Product was obtained as a 7:1 mixture of regioisomers. ^{*d*}Characterized as mixture of α/β .

Then, we explored the reactivity of different amines (Scheme 2). The reaction proceeds well with a variety of substituted dimethylaniline derivatives (3ab to 3ae) as well as with methyldiphenylamine (3af). N-Phenylpyrrolidine and N,N-diethylaniline provided products 3ag and 3ah in excellent yields and regioselectivities, although with poor diastereoselectivity. Similar to the above-mentioned observations for products 3ra and 3sa, an alkene-substituted diphenylamine derivative resulted in formation of product 3ai with no cyclization of the pendant terminal alkene. Nonsymmetrically substituted anilines tended to react at the position leading to the least stable radical. Thus, N-ethyl-N-methylaniline gave 3aj as the major product, while N-methyl-N-isopropylaniline and N-methyl-N-benzylaniline gave 3ak and 3al, with no reaction observed at the isopropyl and benzyl substituents, respectively. Remarkably, the reaction was not limited to aniline derivatives: products 3am and 3an were readily obtained from their parent amines in good yields and selectivities. This opens the way for the application of the present reaction to more diverse and useful products; however, further optimization is still needed to extend the scope to diverse aliphatic amines.²⁶

Finally, we explored the reactivity under our conditions of styrene derivatives, not bearing the electron-withdrawing group on the alkene (Scheme 3). Both styrene and a range of substituted derivatives reacted smoothly with N,N-dimethylaniline to give the corresponding hydroaminomethylation products 5a-i in good yields (54 to 81%) and with complete

Scheme 3. Hydroaminomethylation of Styrene Derivatives (4) with N_iN -Dimethylaniline (2a)^{*a*}

^{*a*}Reactions carried out with 4 (0.2 mmol), 2a (2 equiv), [Ir(ppy)₂(dtbbpy)]PF₆ (1 mol %), and Cs₂CO₃ (20 mol %) in MeCN (8 mL), under blue light irradiation for 24 h while controlling the temperature at 25 °C. Yields are of isolated product. [Ir]⁺ = [Ir(ppy)₂(dtbbpy)]PF₆. ^{*b*}Yield determined by ¹H NMR using an internal standard.

anti-Markovnikov regioselectivity.²⁷ Similarly, 1,1-diphenylethene provided product **5j** in 77% yield. β -Methylstyrene reacted with the same selectivity but providing a very poor yield of **5k**. It is worth noting that, while these examples show that an electron-withdrawing group directly bound to the alkene was not necessary, high electron density was still detrimental to the reaction: Thus, *p*-aminostyrene did not react and *p*-methoxystyrene provided only low yields of the product (**5l**, **5m**). A *m*-methoxy substituent, having an overall electronwithdrawing effect (Hammet $\sigma_m = +0.115$ vs. $\sigma_p = -0.268$), provided **5n** in 70% yield.

The simple conditions employed allowed for the straightforward translation into a readily scalable continuous flow method. Thus, a MeCN solution of alkene, amine, and catalyst containing 20 mol % of DBU was pumped through a coil of PTFE tube which was irradiated with blue LEDs. The collected solution, after workup and purification, afforded the corresponding β -amino ester product. This method was applied, with excellent results, to the preparation of compounds **3aa**, **3ae**, and **3ag** (Scheme 4).

A plausible mechanism for the reaction (Figure 2) would involve reductive quenching of the excited catalyst (E° Ir/*Ir⁺ = 0.76 V) by amine 2 (E° 2⁺/2 = 0.71 V) followed by deprotonation to form and aminoalkyl radical **B**,^{28,29} which would then add across the alkene substrate (1 or 4) double bond. Reduction of the resulting benzylic radical C_{α} followed by protonation would lead to product 3 or 5. Control experiments supported the formation of the α -aminoalkyl radical under our reaction conditions, promoted by the presence of Cs₂CO₃ (Figure S3, SI). Also, deuteration at the benzylic position was observed when the reaction was performed in the presence of D₂O (Figure S4). pubs.acs.org/OrgLett

Scheme 4. Continuous-Flow Production of β -Amino Esters

Figure 2. Plausible mechanism for the hydroaminoalkylation.

Figure 3. DFT-calculated energy profile for the radical addition [PBE0-GD3/6-31+G(d,p), ΔG : Gibbs free energies in solution (SMD model for MeCN) relative to sum of separate reagents reported in kcal/mol]. E° : Calculated reduction potentials vs SCE reported in V.

DFT calculations (PBE0-GD3/6-31+G(d,p), SMD model for MeCN, Figure 3) were consistent with our mechanistic hypothesis: Transition states for the radical addition at positions α and β were both energetically accessible, with addition at α favored by 1.0 kcal/mol, a small but significant difference consistent with the observed regioselectivity. Furthermore, the radical addition step was exergonic by -10.2 and -5.2 kcal/mol, respectively, for the α and β additions, and the calculated reduction potentials of the resulting benzylic or enol radical (-1.47 and -0.94 V) indicate an easy reduction to the corresponding anions by the reduced form of the catalyst ($E^{\circ} = -1.51$ V vs SCE).²⁸ These observations, combined with the absence of cyclization products in the reactions leading to compounds **3ra**, **3sa**, and **3ai**, provide support for kinetic control of the regioselectivity rather than a reversible radical addition under thermodynamic control. It is likely that this observation may extend to other radical additions to moderately electron-poor alkenes.

In conclusion, the methodology presented allows the hydroaminoalkylation of a wide variety of moderately electron-poor alkenes, including styrene derivatives, with aniline derivatives as well as aliphatic amines. Besides, the method is readily scalable under continuous flow conditions. Computational data suggest that the reaction is driven by the presence of the aromatic substituent, which controls reactivity and regioselectivity. An accurate balance between the aromatic substituent and the electron-withdrawing group is necessary for selectivity, with stronger EWGs leading to Giese-type addition, which will be of importance for the development of related regioselective methodologies further expanding the scope of these transformations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01715.

Further details on reaction optimization, characterization of all new compounds, and copies of NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Xacobe C. Cambeiro – School of Science, University of Greenwich, Chatham Maritime ME4 4TB, United Kingdom; Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom; • orcid.org/0000-0002-7365-7201; Email: x.cambeiro@gre.ac.uk

Authors

- Natalia A. Larionova Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom; © orcid.org/ 0000-0003-4668-6717
- Jun Miyatake Ondozabal Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
- Emily G. Smith Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01715

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge Queen Mary University of London for partially funding this research. N.A.L. thanks the European Commission for an MSCA fellowship (Project LIONCAT, 799664). J.M.O. thanks QMUL for a PhD scholarship.

Organic Letters

REFERENCES

(1) Reviews: (a) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Synthetic Utilization of α -Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis. Acc. Chem. Res. **2016**, 49 (9), 1946–1956. (b) Beatty, J. W.; Stephenson, C. R. J. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis. Acc. Chem. Res. **2015**, 48 (5), 1474–1484.

(2) For pioneering investigation on radical addition to alkenes, see:
(a) Giese, B. Formation of CC Bonds by Addition of Free Radicals to Alkenes. Angew. Chem., Int. Ed. Engl. 1983, 22 (10), 753-764.
(b) Lalevée, J.; Allonas, X.; Genet, S.; Fouassier, J.-P. Role of Charge-Transfer Configurations on the Addition Reaction of Aminoalkyl Radicals onto Acrylate Double Bonds. J. Am. Chem. Soc. 2003, 125 (31), 9377-9380. (c) Srikanth, G. S. C.; Castle, S. L. Advances in radical conjugate additions. Tetrahedron 2005, 61 (44), 10377-10441.

(3) (a) Lewis, F. D.; Ho, T.-I. Selectivity of tertiary amine oxidations. J. Am. Chem. Soc. **1980**, 102 (5), 1751–1752. (b) Lalevée, J.; Graff, B.; Allonas, X.; Fouassier, J. P. Aminoalkyl Radicals: Direct Observation and Reactivity toward Oxygen, 2,2,6,6-Tetramethylpiperidine-N-Oxyl, and Methyl Acrylate. J. Phys. Chem. A **2007**, 111 (30), 6991–6998.

(4) Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. The chemistry of amine radical cations produced by visible light photoredox catalysis. *Beilstein J. Org. Chem.* **2013**, *9*, 1977–2001.

(5) Ju, X.; Li, D.; Li, W.; Yu, W.; Bian, F. The Reaction of Tertiary Anilines with Maleimides under Visible Light Redox Catalysis. *Adv. Synth. Catal.* **2012**, 354 (18), 3561–3567.

(6) (a) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Visible-Light-Mediated Utilization of α -Aminoalkyl Radicals: Addition to Electron-Deficient Alkenes Using Photoredox Catalysts. J. Am. Chem. Soc. **2012**, 134 (7), 3338–3341. (b) Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. Oxygen Switch in Visible-Light Photoredox Catalysis: Radical Additions and Cyclizations and Unexpected C–C-Bond Cleavage Reactions. J. Am. Chem. Soc. **2013**, 135 (5), 1823–1829.

(7) Selected recent examples: (a) Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. *Nature* **2016**, 532 (7598), 218–222. (b) Lin, S.-X.; Sun, G.-J.; Kang, Q. A visible-light-activated rhodium complex in enantioselective conjugate addition of α -amino radicals with Michael acceptors. *Chem. Commun.* **2017**, 53 (54), 7665–7668. (c) McManus, J. B.; Onuska, N. P. R.; Nicewicz, D. A. Generation and Alkylation of alpha-Carbamyl Radicals via Organic Photoredox Catalysis. *J. Am. Chem. Soc.* **2018**, 140 (29), 9056–9060.

(8) Aycock, R. A.; Pratt, C. J.; Jui, N. T. Aminoalkyl Radicals as Powerful Intermediates for the Synthesis of Unnatural Amino Acids and Peptides. *ACS Catal.* **2018**, *8* (10), 9115–9119.

(9) (a) Dai, X.; Cheng, D.; Guan, B.; Mao, W.; Xu, X.; Li, X. The Coupling of Tertiary Amines with Acrylate Derivatives via Visible-Light Photoredox Catalysis. *J. Org. Chem.* **2014**, 79 (15), 7212–7219. (b) Dai, X.; Mao, R.; Guan, B.; Xu, X.; Li, X. Visible light photoredox catalysis: regioselective radical addition of aminoalkyl radicals to 2,3-allenoates. *RSC Adv.* **2015**, *5* (68), 55290–55294.

(10) Hepburn, H. B.; Melchiorre, P. Brønsted acid-catalysed conjugate addition of photochemically generated α -amino radicals to alkenylpyridines. *Chem. Commun.* **2016**, *52* (17), 3520–3523.

(11) For a general review, see: Kanegusuku, A. L. G.; Roizen, J. L. Recent Advances in Photoredox-Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. *Angew. Chem., Int. Ed.* **2021**, DOI: 10.1002/anie.202016666.

(12) Selected recent examples: (a) Cao, Z.-Y.; Ghosh, T.; Melchiorre, P. Enantioselective radical conjugate additions driven by a photoactive intramolecular iminium-ion-based EDA complex. *Nat. Commun.* **2018**, *9* (1), 3274. (b) Shen, X.; Li, Y.; Wen, Z.; Cao, S.; Hou, X.; Gong, L. A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. *Chem. Sci.* **2018**, 9 (20), 4562–4568. (c) Le Saux, E.; Ma, D.; Bonilla, P.; Holden, C. M.; Lustosa, D.; Melchiorre, P. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals. *Angew. Chem., Int. Ed.* **2021**, 60 (10), 5357–5362.

(13) (a) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (\pm)-Pregabalin. J. Am. Chem. Soc. **2014**, 136 (31), 10886–10889. (b) Millet, A.; Lefebvre, Q.; Rueping, M. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α -Amino Radicals to Electron-Deficient Olefins. Chem. - Eur. J. **2016**, 22 (38), 13464–13468. (c) McCarver, S. J.; Qiao, J. X.; Carpenter, J.; Borzilleri, R. M.; Poss, M. A.; Eastgate, M. D.; Miller, M. M.; MacMillan, D. W. C. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew. Chem., Int. Ed. **2017**, 56 (3), 728–732.

(14) (a) Miyazawa, K.; Koike, T.; Akita, M. Hydroaminomethylation of Olefins with Aminomethyltrifluoroborate by Photoredox Catalysis. *Adv. Synth. Catal.* **2014**, 356 (13), 2749–2755. (b) Ma, J.; Lin, J.; Zhao, L.; Harms, K.; Marsch, M.; Xie, X.; Meggers, E. Synthesis of β -Substituted γ -Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. *Angew. Chem., Int. Ed.* **2018**, 57 (35), 11193– 11197.

(15) Lovett, G. H.; Sparling, B. A. Decarboxylative Anti-Michael Addition to Olefins Mediated by Photoredox Catalysis. *Org. Lett.* **2016**, *18* (14), 3494–3497.

(16) Some examples of α -selective addition of radicals other than α aminoalkyl have been reported: (a) Ando, Y.; Kamatsuka, T.; Shinokubo, H.; Miyake, Y. Selective α -arylation of $\alpha_{,\beta}$ -unsaturated imides mediated by a visible light photoredox catalyst. Chem. Commun. 2017, 53 (65), 9136-9138. (b) Gu, F.; Huang, W.; Liu, X.; Chen, W.; Cheng, X. Substituted Hantzsch Esters as Versatile Radical Reservoirs in Photoredox Reactions. Adv. Synth. Catal. 2018, 360 (5), 925-931. (c) Huang, Y.-S.; Wang, J.; Zheng, W.-X.; Zhang, F.-L.; Yu, Y.-J.; Zheng, M.; Zhou, X.; Wang, Y.-F. Regioselective radical hydroboration of electron-deficient alkenes: synthesis of α boryl functionalized molecules. Chem. Commun. 2019, 55 (79), 11904-11907. (d) Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Regioselective radical αborylation of α_{β} -unsaturated carbonyl compounds for direct synthesis of α -borylcarbonyl molecules. Nat. Commun. 2019, 10 (1), 1934. (e) Zhao, Q.; Jin, J.-K.; Wang, J.; Zhang, F.-L.; Wang, Y.-F. Radical α -addition involved electrooxidative [3 + 2] annulation of phenols and electron-deficient alkenes. Chem. Sci. 2020, 11 (15), 3909-3913.

(17) For a recent reviews on β -amino acid synthesis, see: Noda, H.; Shibasaki, M. Recent Advances in the Catalytic Asymmetric Synthesis of β^2 - and $\beta^{2,2}$ -Amino Acids. *Eur. J. Org. Chem.* **2020**, 2020 (16), 2350–2361.

(18) (a) Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W.
Visible light-induced oxidative coupling reaction: easy access to Mannich-type products. *Chem. Commun.* 2012, 48 (17), 2337–2339.
(b) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J.
Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. *Org. Lett.* 2012, 14 (1), 94–97. (19) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D.
C. Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. *Chem. Commun.* 2011, 47 (8), 2360–2362. (20) Wei, G.; Zhang, C.; Bureš, F.; Ye, X.; Tan, C.-H.; Jiang, Z. Enantioselective Aerobic Oxidative C(sp3)–H Olefination of Amines via Cooperative Photoredox and Asymmetric Catalysis. *ACS Catal.* 2016, 6 (6), 3708–3712.

(21) (a) Koike and Akita reported 5% yield in hydroaminoalkylation of styrene with an aminomethyltrifluoroborate, ref 14a. (b) Sparling reported four examples with using the radical generated by oxidative decarboxylation of N-Boc-proline, ref 15. A related alkene difunctionalisation has been reported recently, see: (c) Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Photoredoxcatalyzed dicarbofunc-tionalization of styrenes with amines and CO₂: a convenient access to γ -amino acids. Green Chem. 2020, 22 (18), 5961–5965.

(22) Recently, transition metal-catalysed hydroaminoalkylation of simple alkenes has been reported, see for example: (a) Bielefeld, J.; Doye, S. Fast Titanium-Catalyzed Hydroaminomethylation of Alkenes and the Formal Conversion of Methylamine. *Angew. Chem., Int. Ed.* **2020**, *59* (15), 6138–6143. For an acid-catalyzed hydroaminomethylation using formaldehyde aminals as starting material, see: (b) Kaiser, D.; Tona, V.; Goncalves, C. R.; Shaaban, S.; Oppedisano, A.; Maulide, N. A General Acid-Mediated Hydroaminomethylation of Unactivated Alkenes and Alkynes. *Angew. Chem., Int. Ed.* **2019**, *58* (41), 14639–14643. For a review on catalytic amine synthesis, see: (c) Trowbridge, A.; Walton, S. M.; Gaunt, M. J. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. *Chem. Rev.* **2020**, *120* (5), *2613–2692.*

(23) Larionova, N. A.; Ondozabal, J. M.; Cambeiro, X. C. Reduction of Electron-Deficient Alkenes Enabled by a Photoinduced Hydrogen Atom Transfer. *Adv. Synth. Catal.* **2021**, 363 (2), 558–564.

(24) Iodine-substituted substrates provided complex mixtures with only low yield of the hydroaminoalkylation product.

(25) Newcomb, M. Radical Kinetics and Clocks. In *Encyclopedia of Radicals in Chemistry, Biology and Materials*; Chatgilialoglu, C., Studer, A., Eds.; John Wiley & Sons, Ltd.: 2012.

(26) For example, *N*-methylpyrrolidine and *N*-methylpiperidine both reacted with good conversions to give mixtures of regio- and diastereomeric hydroaminoalkylation products.

(27) The only detected byproducts were double alkylation of the amine with two units of the alkene, and a dehydrogenated derivative of product 5.

(28) This process is well-precedented; see for example: Prier, C. K.; MacMillan, D. W. C. Amine α -Heteroarylation via Photoredox Catalysis: A Homolytic Aromatic SubstituCtion Pathway. *Chem. Sci.* **2014**, 5 (11), 4173–4178.

(29) (a) Wu, Y.; Kim, D.; Teets, T. S. Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. *Synlett* **2021**, DOI: 10.1055/a-1390-9065. (b) Fukuzumi, S.; Yuasa, J.; Satoh, N.; Suenobu, T. Scandium Ion-Promoted Photoinduced Electron Transfer from Electron Donors to Acridine and Pyrene. Essential Role of Scandium Ion in Photocatalytic Oxygenation of Hexamethylbenzene. *J. Am. Chem. Soc.* **2004**, *126* (24), 7585-7594.