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ABSTRACT: The transition-metal-catalyzed direct carboxylation
of an unactivated C−H bond is rarely reported, and no example of
catalysis using abundant and cheap nickel has been reported. In
this work, the first Ni-catalyzed direct carboxylation of an
unactivated C−H bond under an atmospheric pressure of CO2 is
reported. This method affords moderate to high carboxylation
yields of various methyl carboxylates under mild conditions.
Preliminary mechanistic studies reveal that a Ni(0)−Ni(II)−Ni(I)
catalytic cycle may be involved in this reaction.

Despite its significant kinetic inertness and thermodynamic
stability, CO2 is an abundant, nontoxic, inexpensive, and

renewable C1 feedstock in synthetic chemistry.1 The
conversion of CO2 into fine chemicals has attracted
considerable attention, especially the formation of carboxylic
acids,2,3 which are building blocks in many valuable synthetic
compounds.4

Compared to traditional coupling methods, the transition-
metal-catalyzed C−H functionalization reactions are consid-
ered to be a more efficient and atom-economic strategy.5 Thus,
transition-metal-catalyzed C−H carboxylation provides a
powerful tool for CO2 fixation. In recent years, although
transition-metal-catalyzed C−H carboxylation with CO2 has
led to great progress in the synthesis of carboxylic acids or their
derivatives,3 the substrates are mainly focused on terminal
alkynes, perfluorinated or perchlorinated benzenes, and
heteroaromatic rings, which possess acidic C−H bonds or an
electron-deficient nature.6a−d The carboxylation of these kinds
of C−H bonds can be carried out in the presence of a base
even without a metal catalyst.6e−h The transition-metal-
catalyzed direct carboxylation of unactivated aryl C−H
bonds is rarely reported. The first carboxylation of unactivated
C−H bonds with CO2 was reported in 1984 by Fujiwara using
Pd(OAc)2 as a catalyst, but with limited examples and low
turnover numbers.7 In 2011 and 2014, Iwasawa’s group
reported Rh(I)-catalyzed direct carboxylation of unactivated
aryl C−H bonds with CO2 (Scheme 1a). In these reactions,
insertion of CO2 into a C−Rh(I) bond is involved and a
stoichiometric methyl aluminum complex plays an important
role.8 In 2014, Sato’s group reported cobalt-catalyzed allylic
C−H carboxylation.18

Some elegant works including Pd- or Rh-catalyzed
lactonization or lactamization of unactivated alkenyl or aryl
C−H bonds with CO2 assisted by an intramolecular hydroxyl
or amino group were also reported by the groups of Iwasawa,

Yu, Wang, and Li,9 but the insertion of CO2 into the C−M or
O−M/N−M bond is ambiguous.
As an abundant and cheap first-row transition metal, nickel

has been extensively studied in homogeneous catalysis because
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Scheme 1. Transition-Metal-Catalyzed Direct Carboxylation
of Unactivated C−H Bonds with CO2
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of its distinguishing characteristics.10 Ni-catalyzed reductive
carboxylation of organic (pseudo)halides with CO2 is one of
the most well-established strategies.2,11 The Ni(0)−Ni(II)−
Ni(I) catalytic cycle was suggested for these reactions, and
CO2 was inserted into the more nucleophilic C−Ni(I) bond.
Very recently, Murakami reported the carboxylation of
benzylic and aliphatic C−H bonds with CO2 induced by
light, ketone, and nickel (Scheme 1b). The mechanism of this
reaction involved the formation of benzylic and aliphatic
radicals and an R−Ni(I) intermediate, and the substance scope
has limitations.12 Although Ni-catalyzed C−H functionaliza-
tion reactions have been extensively reported,13 to the best of
our knowledge, Ni-catalyzed direct carboxylation of unac-
tivated C−H bonds with CO2 remains unreported. Herein, we
report for the first time a Ni-catalyzed direct carboxylation of
unactivated C−H bonds of indole, benzothiophene, benzofur-
an, and benzene under an atmospheric pressure of CO2. The
carboxylation products, especially indole-2-carboxylic acids,
and their derivatives are ubiquitous structural motifs in
pharmaceuticals and natural products.14

Our initial attempt was conducted by employing N-quinolyl
1-methylindole-3-carboxamide (1a) as a model substrate under
an atmospheric pressure of CO2 in the presence of NiCl2 (20
mol %) with KOtBu (2.0 equiv) as the base and Mn (3.0
equiv) as the reductant in DMF for 24 h; the desired C-2
carboxylation product 2a was obtained in 50% isolated yield
(Table 1, entry 1). Different ligands, including bipyridines and
phenanthrolines, were screened first (Table 1, entries 2−5, and
Table S1, see the Supporting Information for details). 4,7-
Diphenyl-1,10-phenanthroline (L6) proved to be the most

effective ligand providing 2a in 63% yield. Then, other simple
and readily available nickel catalysts were investigated (Table
1, entries 6−9), and NiCl2 proved to be the most effective.
Some inorganic salts were tested as additives (Table 1, entries
10−13), which were often added in Ni-catalyzed carboxylation
of aryl halides with CO2.

11 Addition of LiCl improved the yield
to 84%, while addition of KCl had no influence. Addition of
MgCl2 even suppressed the reaction totally. LiBr was also
investigated and less effective than LiCl. The addition of LiCl
may facilitate the carboxylation by accelerating the reduction of
Ni(II).15 The desired product was produced in 87% yield
when the temperature was decreased to 100 °C (see Table S1,
entry 21). In addition, product 2a was obtained in 85%
isolated yield with 10 mol % catalyst loading (Table 1, entry
14). Notably, product 2a was detected in only a trace amount
in the absence of NiCl2 with recovery of 1a in 95% yield
(Table 1, entry 15), which revealed that the nickel catalyst is
essential. Other solvents, reductants, and bases were also
screened (see Table S1), and DMF, Mn, and KOtBu were the
best combination, giving an 85% isolated yield.
With the established optimal reaction conditions in hand,

the scope of this reaction was investigated (Scheme 2). When
indoles possess an electron-donating or electron-withdrawing
group at the C-5 position, such as alkyl (-Me), alkoxy (-OMe),
trifluoromethyl (-CF3), and fluoro (-F) groups, the carbox-
ylation proceeded smoothly to afford desired products 2b−2e,

Table 1. Optimization of Reaction Conditionsa

entry Ni catalyst L additive yield (%)

1 NiCl2 − − 50
2 NiCl2 L1 − 56
3 NiCl2 L2 − 46
4 NiCl2 L3 − 58
5 NiCl2 L6 − 63
6 NiBr2 L6 − 60
7 NiI2 L6 − 57
8 Ni(COD)2 L6 − 62
9 Ni(OTf)2 L6 − 15
10 NiCl2 L6 LiCl 84
11 NiCl2 L6 MgCl2 0
12 NiCl2 L6 KCl 62
13 NiCl2 L6 LiBr 79
14b NiCl2 L6 LiCl 85
15b − L6 LiCl trace

aReaction conditions: 1a (0.2 mmol), Ni catalyst (20 mol %), L (40
mol %), KOtBu (2.0 equiv), Mn (3.0 equiv), additive (1.0 equiv),
DMF (2.0 mL) at 130 °C for 24 h. The isolated yield is given. bAt
100 °C. Ni catalyst (10 mmol %), L (20 mmol %).

Scheme 2. Substrate Scope of Ni-Catalyzed C−H
Carboxylationb

a2g′ as the substrate. bReaction conditions: 1a (0.2 mmol), NiCl2 (10
mol %), L6 (20 mol %), KOtBu (2.0 equiv), Mn (3.0 equiv), LiCl
(1.0 equiv), DMF (2.0 mL) at 100 °C for 24 h. The isolated yield is
given.
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respectively, in 70−86% yields. However, when chloro (-Cl) or
bromo (-Br) was introduced at the C-5 position of indole,
desired products 2f (30%) and 2g (8%) were obtained in low
yields. Meanwhile, two byproducts, including 5-carboxylation
(2g′) and 2,5-dicarboxylation (2g″) products, were isolated in
18% and 32% yields, respectively, indicating the presence of
C−Br carboxylation as a competition reaction. When an ester
group was introduced at the C-5 position (2g′), desired
product 2g″ was obtained in 65% yield. Indoles with a
substituent at the ortho position gave the desired products in
slightly low yields (2h, 63%; 2i, 45%), possibly due to the
steric hindrance. Various functional groups at the C-6 and C-7
positions of indole were well tolerated, affording the desired
products 2j−2l and 2n−2p, respectively, in 64−94% yields.
The low yield of 2m (24%) is also due to the presence of C−
Cl carboxylation. However, when a vinyl group was introduced
at the C-6 position of indole, no reaction was detected,
probably because the vinyl group can coordinate with nickel
and suppress the carboxylation. The N-protecting groups of
indole were next examined. Without the N-protecting group,
no carboxylation was observed (2q). N-MOM- or N-Bn-
protected indole afforded corresponding carboxylation product
2r or 2s in 87% or 55% yield, respectively. In addition to
indoles, other nitrogen-, oxygen-, and sulfur-containing hetero-
cycles could also undergo direct carboxylation in 34−81%
yields (2t−2x, respectively). It seems that the fused aromatic
substrates may facilitate the carboxylation. When benzamide
with more inert C−H bonds was employed as a substrate, the
corresponding product 2y was obtained in 51% yield under
standard conditions.
To demonstrate the synthetic potential of this method, a

gram-scale reaction was conducted and product 2a was
obtained in 71% yield. Furthermore, the 8-aminoquinoline
directing group could be easily removed by using IBX as an
oxidant under mild conditions16 to give the primary amide 3l
in 78% yield (Scheme 3).

There are several reports of acid- or base-promoted C−H
carboxylation of indole and benzothiophene.19 The Lewis acid
Me2AlCl-mediated C−H carboxylation of indole involved the
electrophilic substitution of indole to form indolylaluminum
species, which then reacted with CO2 to form aluminum
carboxylate. The carboxylation of indole occurred at position 3,
and a high pressure (3.0 MPa) is needed to shift the reversible
equilibrium to the carboxylation direction.19a LiOtBu-mediated
C−H carboxylation of indole could occur at position 3 with an
atmospheric pressure of CO2 but only limited to the
unprotected indole.19b Copper-catalyzed formal C−H carbox-
ylation of indole and benzothiophene occurred with an

atmospheric pressure of CO2 at position 2, but this is a two-
step reaction. The first step is the deprotonative alumination
with a mixed alkyl amido lithium aluminate compound
iBu3Al(TMP)Li. The second step is the NHC copper-catalyzed
carboxylation of the resulting arylaluminum species.19c There-
fore, our work provides an efficient direct C2−H carboxylation
strategy for indole and benzothiophene derivatives.
To better clarify the reaction mechanism, some preliminary

studies were carried out. First, a H/D scrambling experiment
was conducted. Reaction of 1a with D2O with a Ni catalyst
under Ar instead of CO2 afforded [2-D]-1a with 96%
deuteration (Scheme 4a), indicating that C−H activation

was reversible. Second, parallel kinetic experiments with 1a or
[2-D]-1a (96% D) with CO2 and a competition experiment
between 1a and [N-CD3-2-D]-1a were performed, and kH/kD
values of 1.25 and 1.54 were obtained, respectively (Scheme
4b), suggesting that the C−H bond cleavage may not be
involved in the rate-limiting step. Meanwhile, intermolecular
competition experiments between 5-CF3- and 5-OMe-sub-
stituted indoles were conducted. The corresponding carbox-
ylation products were obtained in a ratio of 1:0.25 (Scheme
4c), revealing that the electron-deficient substrate (1f) has
better reactivity.
When Ni(cod)2 was used instead of NiCl2 under standard

conditions, the carboxylation product was obtained in 82%
yield (Scheme 5a), indicating that Ni(0) may be the
catalytically active species. When the N−H group of the
substrate was protected with methyl (1z), no product was
observed (Scheme 5b), indicating that the N−H bond in the
bidentate directing group also played an important role. The
isolation of the cyclonickel intermediate in the reaction was
tried, but many attempts failed. Fortunately, when the catalyst
loading was increased to 40 mol % and the reaction was
stopped at 4 h under the standard conditions, the cyclo-

Scheme 3. Gram-Scale Synthesis and Removal of the
Directing Group

Scheme 4. Preliminary Mechanistic Studies
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metalated Ni(II) complex (B) and Ni(I) intermediates INT 1
and INT 2 were detected by HRMS (Scheme 5c). The
electron paramagnetic resonance experiment (see the Support-
ing Information for details) was also conducted, but only the
signal of Mn2+ was detected. The signal of Ni(I) may be
covered by the strong signal of Mn2+.
On the basis of our preliminary investigations and previous

reports on Ni-catalyzed C−H bond activation17 and reductive
carboxylation of organic (pseudo)halides with CO2,

11 a
plausible mechanistic pathway via a Ni(0)−Ni(II)−Ni(I)
catalytic cycle was postulated (Scheme 6). First, a catalytically
active Ni(0) species is formed in situ by the reduction of NiCl2
with Mn. Then, the pyridine nitrogen of amide 1a coordinates
to Ni(0) and promotes the oxidative addition of an N−H bond
to afford nickel hydride intermediate A. The ortho-C−H bond

is activated via σ-bond metathesis, providing cyclometalated
Ni(II) intermediate B (detected by HRMS). The detection of
H2 by gas chromatography during the reaction (see the
Supporting Information) supported this process. Reduction of
B by Mn via SET reaction forms Ni(I) species C, which can
occur via a proton exchange with substrate 1a to produce
intermediate INT 1 (detected by HRMS). Then CO2 is
inserted into the C−Ni(I) bond to produce carboxylate Ni(I)
intermediate D, which also can occur via a proton exchange to
produce intermediate INT 2 (detected by HRMS). Finally, D
is reduced to Ni(0) by Mn for the next catalytic cycle.
Meanwhile, lithium salts of carboxylate and amide anion are
formed in the presence of LiCl and further acidified and
reacted with TMSCHN2 to afford product 2a. KOtBu played a
vague but indispensable role in the catalytic cycle (see Table
S1, entries 18−20). It may facilitate the insertion of CO2 into
the C−Ni(I) bond because CO2 might react with KOtBu to
generate tBuOCO2K, which is more active than CO2.

9b,e,f The
use of an excess of KOtBu may also suppress the undesired
decarboxylation side reaction.19b

In summary, we developed the first Ni-catalyzed direct
carboxylation of the unactivated C−H bond of indoles using
an 8-aminoquinoline auxiliary under an atmospheric pressure
of CO2. Various methyl carboxylates were accessed easily. This
straightforward and novel carboxylation strategy will provide a
new approach to CO2 fixation. Further exploration of this
reaction with other types of substrates and the capture of
reaction intermediates are being carried out in our laboratory.
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