Accepted Manuscript

Tetrahydropyrido[*d*]pyridazinones --promising scaffolds for drug discovery

Anatoliy G. Yaremenko, Dmitriy M. Volochnyuk, Vyacheslav V. Shelyakin, Oleksandr O. Grygorenko

PII: S0040-4020(13)00959-9

DOI: 10.1016/j.tet.2013.06.029

Reference: TET 24505

To appear in: *Tetrahedron*

Received Date: 20 January 2013

Revised Date: 28 May 2013

Accepted Date: 10 June 2013

Please cite this article as: Yaremenko AG, Volochnyuk DM, Shelyakin VV, Grygorenko OO, Tetrahydropyrido[*d*]pyridazinones –promising scaffolds for drug discovery, *Tetrahedron* (2013), doi: 10.1016/j.tet.2013.06.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Tetrahedron journal homepage: www.elsevier.com

Tetrahydropyrido[d]pyridazinones – promising scaffolds for drug discovery

Anatoliy G. Yaremenko,^a Dmitriy M. Volochnyuk,^a Vyacheslav V. Shelyakin^{a*} and Oleksandr O. Grygorenko^b

^aInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine ^bTaras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: Fused heterocycles Pyridazines Piperidines Catalytic hydrogenation Heterocyclizations An approach to the synthesis of all possible tetrahydropyrido[*d*]pyridazinones has been developed. The method relies on the catalytic hydrogenation of the corresponding aromatic counterparts which were obtained by cyclization of the relevant dibromomethyl-substituted pyridinecarboxylates with hydrazine. The synthetic schemes include 4 - 5 steps starting from commercially available materials. The tetrahydropyrido[*d*]pyridazinone scaffolds are combinations of a saturated heterocycle (piperidine) and a privileged aromatic heterocycle (pyridazinone); hence they are promising starting points for the design in medicinal chemistry.

2012 Elsevier Ltd. All rights reserved.

1. Introduction

Pyridazines are a family of structures which are of top interest. to contemporary drug discovery.^{1,2} Several hundred papers dealing with biologically active derivatives of this heterocycle belonging to almost all therapeutic classes have been published in the last decade. In a recent review by Wermuth,³ several arguments justifying largely the status of pyridazines as privileged structures in medicinal chemistry were given. In particular, pyridazine is a classical bioisostere for benzene and which improves significantly pyridine rings both physicochemical properties and interactions with a potential biological target. On the other hand, it can act as a surrogate for a number of functional groups, e.g. carboxamide. Recently, pyridazine-based scaffolds were proposed as α -helix mimetics, whereas pyridazinones have attracted attention as possible analogues of nucleobases.^{5, 6}

To date, most of the pyridazine derivatives used in medicinal chemistry contain aryl C-3 and/or C-6 substituent; this was related to a higher synthetic feasibility of these compounds.

There are also many examples of biologically active compounds containing pyridazine as a part of a fused aromatic heterocyclic system.3 Recent trends in drug discovery, however, show the tendency of moving away from such sp^2 -enriched structures towards their saturated counterparts.^{7,8,9,10} On the other hand, it is widely accepted that conformational restriction is one of the essential properties characteristic for drug molecules.¹¹ In this view, fusion of the piperazine ring with a saturated heterocycle can be a valuable approach to the design of building blocks of enhanced interest to drug discovery. For this reason, saturated heterocyclic amines (e. g. piperidine) are especially promising as they allow further functionalization of the molecule using wellestablished methods of combinatorial chemistry.¹² In the fact, pyridazine (or pyridazinone) moiety can be also used for selective chemical modification of the parent scaffold. Implementation of the ideas discussed above leads to the fused piperazines 1 - 4 as possible targets for the synthesis (Figure 1), which is embodied in this work.

Tetrahedror

^{*}Corresponding author. Tel.: +380 44 292 71 50; fax: +380 44 426 40 74 ; e-mail: synthecom@bigmir.net (V.V.S.)

ACCEPTED MANUSCRIPT

Tetrahedron

Figure 1. Tetrahydropyrido[d]pyridazinone scaffolds

Calculated values of physico-chemical properties of 1 - 4 (MW 151.2; Fsp³ 0.43; cLogP -0.64, -1.19, -1.32 and -0.64, respectively; TPSA 53.49 Å²)¹³ fit perfectly into the limits proposed for the molecular fragments in drug discovery, *e. g.* "Rule-of-three".¹⁴ Therefore, heterocycles 1 - 4 are examples of the bifunctional conformationally restricted scaffolds¹⁵ which can be good starting points for the lead-oriented synthesis in drug discovery.¹⁶

2. Results and discussion

One of is most obvious retrosynthetic approaches to these compounds is from their aromatic counterparts 5 - 8 (Scheme 1). All the compounds 5 - 8 are mentioned in the literature; their reported syntheses relied either on the cyclization of various precursors 9 - 12 with hydrazine (Figure 2).^{17, 18, 19, 20} or oxidation of the corresponding dihydropyridopyridazines.^{21, 22} Looking for a general approach to the synthesis of 5 - 8, we have turned our attention to aldehydoesters 13 - 16 as key intermediates. The method for the preparation of these compounds described previously involved partial reduction of the corresponding pyridinedicarboxylates.^{23, 24, 25} and was not convenient due to selectivity problems, especially upon scale-up. In this work, we considered bromination of the pyridinecarboxylates 17 - 20 followed by hydrolysis as an alternative approach to 13 - 16.

Scheme 1 Retrosynthetic analysis of 1 – 4

Figure 2 Synthetic precursors of pyrido[d]pyridazinones 5 – 8 reported in the literature

The implementation of the retrosynthetic approach discussed above is shown in Schemes 2-5. Compounds 21-24 which are readily available commercially were used as the starting materials in these syntheses. They were transformed into the esters 17-20 in one or two steps. To achieve selective transformation of the methyl groups in 17-20 to the aldehydes, two-step reaction sequences were used instead of the methods based on direct oxidation. First, bromination of 17-20 was performed, using *N*-bromosuccinimide (NBS) in CCl₄; the corresponding dibromides 25-28 were obtained in good yields

(82–92%). Unfortunately, hydrolysis of of 25 - 28 by the action of AgNO₃ in aqueous methanol failed to produce aldehydes 13 - 16 in pure form; complex mixtures were obtained instead. Nevertheless, dibromides 25 - 28 themselves reacted smoothly with hydrazine and provided the pyrido[*d*]pyridazinones 5 - 8 in excellent yield (95%), making isolation of free aldehydes 13 - 16 unnecessary.

Scheme 3

As the N–N bonds of pyridazines are susceptible to catalytic hydrogenation, some efforts were made to find optimal conditions for the selective reduction of the pyridine ring in 5-8. A number of experimentations showed that using CF₃COOH as a solvent allowed the target compounds 1-4 to be obtained in 96–97% yields by catalytic hydrogenation of 5-8 in the presence of platinum dioxide in MeOH.

3. Conclusions

Recent tendencies in drug discovery show a great demand for highly hydrophilic, low-molecular-weight molecules with a high degree of saturation which can be used as the starting points in the search for lead compounds. Combination of a saturated heterocycle (*i. e.* piperidine) and a privileged aromatic heterocycle (such as pyridazinone) into a single molecule provides a good example; the four tetrahydropyrido[*d*]pyridazinone scaffolds thus generated leaves much room for the design of biologically relevant molecules. An approach to the synthesis of these building blocks was developed starting from the properly substituted pyridine derivatives. The methods included 4-5 steps starting from commercially available materials and were used for the multigram preparations of the title compounds (~20 g in a single run).

Scheme 4

4. Experimental part

4.1. General

The solvents were purified according to standard procedures. All the starting materials were purchased from Acros, Merck, Fluka. Analytical TLC was performed using Polychrom SI F254 plates. The IR spectra of all synthesed compounds were recorded on Bruker Vertex 70/70v in KBr pellets, the frequencies are given in cm⁻¹. Column chromatography was performed using Kieselgel Merck 60 (230–400 mesh) as the stationary phase. ¹H and ^{13}C NMR spectra were recorded on a Bruker 170 Avance 500 spectrometer (at 500 MHz for Protons and 125 MHz for Carbon-13) and Varian Unity Plus 400 spectrometer (at 400.4 MHz for protons, 100.7 MHz for carbon-13). Chemical shifts are reported in ppm downfield from TMS (¹H, ¹³C) as an internal standard. Elemental analyses were performed at the Laboratory of Organic Analysis, Institute of Organic Chemistry, National Academy of Sciences of Ukraine. Mass spectra were recorded on an Agilent 1100 LCMSD SL instrument (chemical ionization (APCI)).

4.2. 3-Methylpyridine-2-carboxylic acid (29)

3-Methylpyridine-2-carboxylic acid was prepared in 82% yield starting from **21** according to the procedure described in the literature.²⁶ For spectral and physical data, ref.²⁷.

4.3. 4-Methylnicotinic acid (30)

4-Methylnicotinic acid was prepared in 86% yield starting from **23** according to the procedure described in the literature.²⁸ For spectral and physical data, see ref. 29.

4.4. 3-Methylisonicotinic acid (31)

3-Methylisonicotinic acid was prepared in 40% yield starting from **24** according to the procedure described in the literature.²⁶ For spectral and physical data, ref³⁰.

4.5. General procedure for the preparation of 17 - 20

To a solution of carboxylic acid **22** or **29** – **31** (0.1 mol) in dry methanol (150 mL), conc. H_2SO_4 (20 mL) was added. The mixture was refluxed for 15–20 h (LC–MS control). The solvent was removed in vacuo, and the residue was dissolved in H_2O . The solution was made alkaline with cold saturated aq K_2CO_3 and extracted with CH_2Cl_2 (4×50 mL). The combined organic extracts were dried over Na_2SO_4 and evaporated in vacuo. The residue was purified by flash chromatography (EtOAc as eluent) or distilled in vacuo to give **17** – **20**.

4.5.1. Methyl 3-methylpyridine-2-carboxylate (17)

Yield 12.8 g (85%). For spectral and physical data, see ref. 31, 32.

4.5.2. Methyl 2-methylnicotinate (18)

Yield 12.7 g (84%). For spectral and physical data, see ref. 33.

4.5.3. Methyl 4-methylnicotinate (19)

Yield 12.8 g (81%). For spectral and physical data, see ref. 34.

4.5.4. Methyl 3-methylisonicotinate (20)

Yield 13.0 g (86%). For spectral and physical data, see ref. 32.

4.6. General procedure for the preparation of 25 - 28

To a solution of ester 17 - 20 (13.7 g, 0.100 mol) in dry CCl₄ (400 mL), *N*-bromosuccinimide (35.6 g, 0.200 mol) was added. The mixture was slowly heated to reflux, then refluxed for 16 h (monitored by LC–MS), and then cooled to rt. The succinimide was filtered off, and the filtrate was concentrated under reduced pressure to give *gem*-dibromomethyl compound 25 - 28. Analytical samples were prepared by chromatography (hexanes – EtOAc (1 : 9)).

4.6.1. Methyl 3-(dibromomethyl)pyridine-2carboxylate (25)

Yield 12.5 g (83%). Colourless solid. Mp 83–84 °C (CCl₄). IR (KBr): 3413, 3075, 2949, 2844, 1934, 1716, 1580, 1563, 1449, 1427, 1315, 1264, 1197, 1172, 1133, 1080, 957, 854, 807, 718, 673, 652, 592, 529, 483 cm-1. ¹H NMR (CDCl₃) δ 4.02 (3H, s), 7.59 (1H, dd, J = 8.1 Hz and 4.6 Hz), 7.93 (1H,s), 8.49 (d, 1H, J = 8.1 Hz), 8.64 (1H, d, J = 4.6 Hz). ¹³C NMR (CDCl₃), δ 39.6, 53.1, 120.8, 124.1, 138.9, 153.5, 157.8, 165.2. MS (m/z, APCI): 308 (MH+). Anal. Calcd for C₈H₇Br₂NO₂ C 31.10, H 2.28, Br 51.72, N 4.53. Found: C 31.15, H 2.32, Br 51.68, N 4.59.

4.6.2. Methyl 2-(dibromomethyl)nicotinate (26)

Yield 2.71 g (88%). Colourless solid. Mp. 95–96 °C (nhexane). IR (KBr): 3087, 3069, 3043, 3009, 2952, 2841, 1993, 1957, 1712, 1583, 1562, 1427, 1273, 1255, 1190, 1136, 1078, 1056, 957, 858, 833, 809, 791, 737, 696, 668, 638, 599, 488 cm⁻¹.

4

¹H NMR, δ (CDC1₃): 3.96 (3H, s), 7.36 (1H, dd, J = 8.1 Hz and 4.6 Hz), 7.99 (1H, s), 8.25 (1H, dd, J = 8.1 Hz and 1.6 Hz), 8.88 (1H, dd, J = 4.6 Hz and 1.6 Hz). ¹³C NMR (CDC1₃) δ 39.6, 53.1, 124.2, 138.8, 153.4, 157.8, 165.2. MS (m/z, APCI): 308 (MH+). Anal. Calcd. for $C_8H_7Br_2NO_2$.C 31.10, H 2.28, Br 51.72, N 4.53. Found: C 31.18, H 2.34, Br 51.82, N 4.61.

4.6.3. Methyl 4-(dibromomethyl)nicotinate (27)³⁵

Yield 2.56 g (83%). Colourless solid. Mp. 71–72 °C (*n*-hexane). IR(KBr): 3419, 3057, 2957, 2849, 1924, 1723, 1585, 1555, 1488, 1437, 1404, 1277, 1197, 1149, 1107, 1054, 954, 846, 814, 792, 726, 670, 636, 585 cm⁻¹ ¹H NMR (CDC1₃) δ 3.92 (3H, s), 7.87 (1H, s), 7.94 (1H, d, J = 5.4 Hz), 8.77 (1H, d, J = 5.4 Hz), 9.05 (1H, s). ¹³C NMR, δ (CDC1₃): 35.6, 52.9, 119.7, 124.7, 151.1, 151.5, 153.3, 165.2. MS (*m*/*z*, APCI): 308 (MH⁺). Anal. Calcd for C₈H₇Br₂NO₂ C 31.10, H 2.28, Br 51.72, N 4.53. Found: C 31.12, H 2.32, Br 51.80, N 4.60.

4.6.4. Methyl 3-(dibromomethyl)isonicotinate (28)

Yield 2.84 g (92%). Colourless solid. Mp 79 – 80 °C (*n*-hexane). IR(KBr): 3071, 2956, 1912, 1785, 1718, 1584, 1552, 1483, 1429, 1406, 1310, 1282, 1189, 1157, 1097, 958, 854, 810, 708, 679, 679, 646, 606, 495 cm⁻¹ ¹ H NMR (CDC1₃) δ 3.95 (3H, s), 7.63 (1H, d, J = 4.8 Hz,), 7.84 (1H, s), 8.64 (1H, d, J = 4.8 Hz,), 9.39 (1H, s). ¹³C NMR (CDC1₃) δ 34.1, 53.2, 122.1, 131.4, 136.9, 150.6, 153.8, 165.1. MS (*m*/*z*, APCI): 308 (MH⁺). Anal. Calcd. for C₈H₇Br₂NO₂ C 31.10, H 2.28, Br 51.72, N 4.53. Found: C 31.15, H 2.30, Br 51.78, N 4.61.

4.7. General procedure for the preparation of 5-8

A solution of 25 - 28 (3.08 g, 0.01 mol) and hydrazine hydrate (2.00 g, 0.04 mol) in methanol (50 mL) was stirred under reflux for 5 h. The solvent was evaporated under reduced pressure, and the residue was recrystallized from MeOH – H₂O (9 : 1).

4.7.1. Pyrido[2,3-d]pyridazin-8(7H)-one (5)^{17,19}

Yield 1.37 g (95%). Light yellow crystals. Mp 285–286 °C (MeOH–H₂O (9 : 1)) (lit.¹⁷ 288–290 °C). IR(KBr): 3170, 3056, 2924, 1678, 1588, 1552, 1458, 1422, 1364, 1343, 1217, 1167, 1136, 1081, 917, 899, 867, 816, 716, 679, 610, 570, 498 cm⁻¹ ¹H NMR (DMSO- d_6) δ 7.92 (1H, dd, J = 8.1 Hz and J = 4.8 Hz), 8.39 (1H, dd, J = 8.1 Hz and 1.6 Hz), 8.40 (1H, s), 9.07 (1H, dd, J = 4.8 Hz and J = 1.6 Hz), 12.92 (1H, br. s). ¹³C NMR (DMSO- d_6) δ 127.1, 128.6, 135.8, 138.1, 144.0, 154.4, 159.5. MS (m/z, APCI): 146 (MH⁺). Anal. Calcd. for C₇H₅N₃O C 57.14, H 3.43, N 20.56. Found: C 57.37, H 3.25, N 20.51.

4.7.2. Pyrido[2,3-d]pyridazin-5(6H)-one (6)^{20, 36, 37}

Yield 1.38 g (95%). Light yellow crystals. Mp 253–255 °C (MeOH–H₂O (9 : 1)).IR(KBr): 3178, 3118, 3062, 3012, 2956, 2871, 1667, 1602, 1444, 1360, 1318, 1300, 1220, 1148, 1074, 921, 868, 814, 784, 713, 596, 553, 498, 471 cm⁻¹ ¹ H NMR (DMSO- d_6) δ 7.84 (1H, dd, J = 8.1 Hz and 4.8 Hz), 8.41 (1H, s), 8.58 (1H, dd, J = 8.1 Hz and 1.2 Hz), 9.13 (1H, dd, J = 4.8 Hz and 1.2 Hz), 12.97 (1H, br, s). ¹³C NMR (DMSO- d_6), δ 124.5, 127.1, 134.5, 139.8, 146.9, 156.4, 160.3. MS (m/z, APCI): 146 (MH⁺). Anal. Calcd. for C₇H₅N₃O C 57.14, H 3.43, N 28.56. Found: C 57.40, H 3.49, N 28.77.

4.7.3. $Pyrido[3, 4-d]pyridazin-4(3H)-one(7)^{22}$

Yield 1.36 g (93%). Light yellow crystals. Mp 255–256 °C (MeOH–H₂O (9 : 1)). IR(KBr): 3167, 3101, 3062, 3025, 2846, 1664, 1594, 1554, 1496, 1461, 1408, 1366, 1323, 1285, 1247, 1220, 1168, 1135, 1032, 917, 892, 847, 792, 737, 682, 611, 554, 497, 468 cm⁻¹ ¹ H NMR (DMSO- d_6) δ 7.83 (1H, d, J = 5.2Hz), 8.43 (1H, s), 9.02 (1H, d, J = 5.2 Hz), 9.43 (1H, s), 13.00 (1H, br. s). ¹³C NMR (DMSO- d_6) δ 119.4, 122.1, 134.9, 137.4, 149.3,

153.3, 159.2. MS (m/z, APCI): 146 (MH⁺). Anal. Calcd for C₇H₅N₃O C 57.14, H 3.43, N 20.56. Found: C 57.28, H 3.21, N 20.30.

4.7.4. Pyrido[3,4-d]pyridazin-1(2H)-one (8)^{17, 22}

Yield 1.32 g (90%). Light yellow crystals. Mp 290–292°C (MeOH–H₂O (9 : 1)). IR(KBr): 3453, 3167, 3100, 3061, 3011, 2841, 1666, 1552, 1497, 1461, 1407, 1366, 1322, 1284, 1249, 1218, 1167, 1136, 1031, 917, 891, 848, 792, 738, 682, 611, 553, 497, 466 cm⁻¹ ¹ H NMR (DMSO- d_6) δ 8.06 (1H, d, J = 5.2 Hz), 8.52 (1H, s), 8.98 (1H, d, J = 5.2 Hz), 9.32 (1H, s), 12.99 (1H, br. s). ¹³C NMR (DMSO- d_6) δ 118.4, 124.8, 133.0, 137.0,150.6, 151.4,159.0. MS (m/z, APCI): 146 (MH⁺). Anal. Calcd for C₇H₅N₃O C 57.14, H 3.43, N 20.56. Found: C 56.97, H 3.55, N 20.47.

4.8. General procedure for the preparation of 1-4

Compound 5-8 (150 mg, 0.6 mmol) and PtO₂ (30 mg) in CF₃COOH (5 mL) were stirred in a pressure vessel at rt and 50 psi of hydrogen atmosphere for 48 h. The reaction mixture was filtered, and the filtrate was concentrated in vacuo to give compounds 1-4 as trifluoroacetates. To obtain the compounds 1 2 as free bases, the trifluoroacetates were neutralized with saturated aq K₂CO₃, to pH = 7 and then extracted with CH₂Cl₂ (3×50 mL). The combined extracts were dried over Na₂SO₄ and evaporated in vacuo.

4.8.1. 1,3,4,7-Tetrahydropyrido[2,3-d]pyridazin-8(2H)-one (1)^{36,37}

Yield 1.46 g (97%). Light grey crystals. Mp 236–238 °C (MeOH). IR(KBr): 3320, 3105, 3023, 2956, 2864, 1766, 1633, 1562, 1439, 1366, 1334, 1274, 1239, 1186, 1133, 1096, 1052, 990, 887, 863, 834, 774, 698, 603, 572, 532, 497, 462, 429 cm⁻¹ ¹ H NMR (DMSO- d_6) δ 1.76 (2H, quint, J = 5.7 Hz), 2.46 (2H, t, J = 5.7 Hz), 3.24 (2H, t, J = 5.7 Hz), 6.56 (1H, s), 7.38 (1H, s), 12.35 (1H, br. s). ¹³C NMR (DMSO- d_6) δ 20.0, 22.5, 110.0, 139.7, 140.6, 156.6. MS (m/z, APCI): 150 (MH⁺). Anal. Calcd. for C₇H₉N₃O C 55.62, H 6.00, N 27.80 Found: C 55.76, H 6.13, N 27.90.

4.8.2. 2,3,4,6-Tetrahydropyrido[2,3-d]pyridazin-5(1H)-one (2)^{36,37}

Yield 1.44 g (96%). Light grey crystals. Mp 234–235 °C. IR(KBr): 3232, 2957, 1676, 1605, 1561, 1410, 1379, 1351, 1316, 1287, 1194, 1138, 992, 834, 797, 749, 721, 635, 566, 513, 439 cm⁻¹ ¹ ¹H NMR (DMSO-*d*₆) δ 1.72 (2H, quint, *J* = 5.5 Hz), 2.34 (2H, t, *J* = 5.5 Hz), 3.18 (2H, t, *J* = 5.5 Hz), 7.03 (1H, br. s.), 7.41 (1H, s), 12.12 (1H, br. s). ¹³C NMR (DMSO-*d*₆) δ 19.3, 19.7, 105.2, 131.5, 145.8, 161.5. MS (*m*/*z*, APCI): 150 (MH⁺). Anal. Calcd. for C₇H₉N₃O C 55.62, H 6.00, N 27.80. Found: C 55.38, H 5.74, N 27.87.

4.8.3. 5,6,7,8-Tetrahydropyrido[3,4-d]pyridazin-4(3H)-one (**3**), trifluoroacetate

Yield 2.57 g (98%). White crystals. Mp 144–146°C. IR(KBr): 3417, 3195, 3049, 2807, 2647, 2538, 1677, 1620, 1568, 1479, 1422, 1372, 1330, 1281, 1189, 1129, 990, 935, 875, 838, 796, 754, 723, 640, 597, 565, 521, 456, 422 cm⁻¹ ¹H NMR (DMSO- d_6) δ 2.81 (2H, t, *J*=5.8 Hz), 3.34 (2H, d, *J* = 5.8 Hz), 3.97 (2H, t, *J* = 5.8 Hz), 7.83 (1H, s), 9.24 (2H, br. s), 13.16 (1H, br. s). ¹³C NMR (D₂O) δ 18.6, 36.1, 36.5, 113.1 (q, *J* = 292 Hz) 125.6, 135.7, 136.8, 157.1, 159.6 (q, *J* = 34 Hz). MS (*m*/*z*, APCI): 150 (MH⁺). Anal. Calcd. for C₉H₁₀F₃N₃O₃ C 40.76, H 3.80, N 15.85. Found: C 40.79, H 3.94, N 15.98.

4.8.4. 5,6,7,8-Tetrahydropyrido[3,4-d]pyridazin-1(2H)-one (**4**), trifluoroacetate

Yield 2.57 g (97%). White crystals. Mp 178–179 °C. IR (KBr): 3478, 3144, 2982, 2841, 2675, 2500, 1677, 1623, 1566, 1482, 1455, 1425, 1375, 1302, 1208, 1179, 1115, 1040, 989, 945, 892, 836, 792, 752, 721, 640, 608, 564, 540, 517, 478, 460, 442, 426 cm⁻¹ ¹H NMR (DMSO- d_6) δ 2.66 (2H, quint, J = 5.6 Hz), 3.36 (2H, t, J = 5.6 Hz), 4.15 (2H, t, J = 5.6 Hz), 7.79 (1H, s), 9.62 (2H, s), 13.07 (1H, br. s). ¹³C NMR (D₂O) δ 16.9, 37.4, 38.4, 113.7 (q, J = 292 Hz), 130.2, 131.4, 134.6, 158.2, 160.2 (q, J = 35 Hz). MS (m/z, APCI): 150 (MH⁺). Anal. Calcd. for C₉H₁₀F₃N₃O₃. C 40.76, H 3.80, N 15.85. Found: C 40.82, H 3.85, N 15.71.

References

- 1. Heinisch G, Frank H. Prog. Med. Chem. 1990, 27, 1-49.
- 2. Heinisch G, Kopelent-Frank H. Prog. Med. Chem. 1992, 29, 141– 183.
- 3. Wermuth, C. G. Med. Chem. Commun. 2011, 2, 935–941.
- 4. Volonterio, A.; Moisan, L.; Rebek Jr., J. Org Lett. 2007, 9, 3733– 3736.
- Olsen, A. G.; Dahl, O.; Nielsen, P. E. Bioorg. Med. Chem. Lett. 2004, 14, 1551–1554.
- Malnuit, V.; Duca, M.; Benhida, R. Org. Biomol. Chem. 2011, 9, 326–336.
- 7. Feher, M.; Schmidt, J. M. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227
- 8. Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752–6756.
- 9. Kingwell, K. Nature Rev. Drug Discovery 8, 931.
- Nicholls, A.; McGaughey, G. B.; Sheridan, R. P.; Good, A. C.; Warren, G.; Mathieu, M.; Muchmore, S. W.; Brown, S. P.; Grant, J. A.; Haigh, J. A.; Nevins, N.; Jain, A. N.; Kelley, B. *J. Med. Chem.* 2010, *53*, 3862–3886.
- Mann, A. In: *Practice of Medicinal Chemistry* (3rd Ed.); Wermuth, C. G., Ed.; Academic Press/Elsevier: Amsterdam, 2008; pp. 363–379.
- Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. *Chem. Rev.* 2011, 111, 5506– 5568.
- Instant JChem was used for prediction of the physico-chemical properties of 1-4, Instant J Chem 3.0, 2009, ChemAxon (http://www.chemaxon.com).
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. Drug Discov. Today 2003, 8, 876–877.
- Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. *Chem. Rev.* 2011, *111*, 5506– 5568.
- 16. Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed. 2012, 51, 1114 – 1122.
- 17. Brzezinski, J. Z.; Bzowski, H. B.; Epsztajn, J. Tetrahedron 1996, 52, 3261–3272.
- Pakulska, W.; Czarnecka, E.; Malinowski, Z.; Szczesniak, A. K.; Epsztajn, J. Arch. Pharm. 2009, 342, 41–47.
- 19. Bottari, F.; Carboni, S. Gazz. Chim. Ital. 1956, 86, 990-996.
- Ames, D. E.; Dodds, W. D. J. Chem. Soc. Perkin Trans. 1 1972, 705–710.
- Kakimoto, S.; Tonooka, S. Bull. Chem. Soc. Jpn. 1969, 42, 2996– 2297.
- 22. Decormeille, A.; Queguiner, G.; Pastour, P. Bull. Soc. Chim. Fr. 1977, 665–668.
- Ornstein, P. L.; Schaus, J. M.; Chambers, J. W.; Huser, D. L.; Leander, J. D.; Wong, D. T.; Paschal, J.; Jones, N. D.; Deeter, J. B. J. Med. Chem. 1989, 32, 827–833.
- Makki, M. S. I.; Samarkandy, A.-R. A.; Kabuli, R. A.; Hewlins, M. J. E. J. Ind. Chem. Soc. 1994, 71, 75–80.
- 25. Queguiner, G.; Pastour, P. Bull. Soc. Chim. Fr. 1969, 3678-3683.
- Clarke, K.; Goulding, J.; Scrowston, R. M. J. Chem. Soc. Perkin Trans. 1 1984, 1501–1505.
- Epsztajn, J.; Bieniek, A.; Plotka, M. W. J. Chem. Res. (M) 1986, 442–474.
- McElvain, S. M.; Goese, M. A. J. Am. Chem. Soc. 1943, 65, 2233–2236.
- Epsztajn, J.; Plotka, M. W.; Scianowski, J. Synth. Commun. 1992, 22, 1239–1247.

- Yuan, Y.; Elbegdorj, O.; Chen, J.; Akubathini, S. K.; Zhang, Y.; Beletskaya, I. O.; Selley, D. E. *Bioorg. Med. Chem. Lett.* 2011, 21, 5625–5629.
- 31. Renslo, A. R.; Danheiser, R. L. J. Org. Chem. 1998, 63, 7840– 7850.
- 32. Dunn, A. D. Org. Prep. Proc. Int. 1999, 31, 120–123.
- Lieby-Muller, F.; Allais, C.; Constantieux, T.; Rodriguez, J. Chem. Commun. 2008, 4207–4209.
- Comins, D. L.; Stroud, E. D.; Herric, J. J. Heterocycles 1984, 22, 151–157.
- 35. Kuthan, J. et al. Coll. Czech. Chem. Commun. 1977, 42, 283–291.
- Kakimoto, S.; Tonooka, S. Bull. Chem. Soc. Jpn. 1967, 40, 153– 159.
- 37. Paul, D. B.; Rodda, H. J. Austr. J. Chem. 1969, 22, 1745-1757.

Supporting information

Tetrahydropyrido[d]pyridazinones –promising scaffolds for drug discovery

Anatoliy G. Yaremenko,^a Dmitriy M. Volochnyuk,^a Vyacheslav V. Shelyakin^{a,*} and Oleksandr O. Grygorenko^b

^aInstitute of Organic Chemistry, National Academy of Sciences of Ukraine,

Murmanska Street 5, Kyiv 02660, Ukraine

^bTaras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine

E-mail: <u>synthecom@bigmir.net</u>

ACCEPTED MANUSCRIPT

Table of contents

1.	¹ H NMR spectrum of the compound 1	S4
2.	13 C NMR spectrum of the compound 1	S5
3.	¹ H NMR spectrum of the compound 5	S6
4.	¹³ C NMR spectrum of the compound 5	S7
5.	¹ H NMR spectrum of the compound 25	S 8
6.	¹³ C NMR spectrum of the compound 25	S 9
7.	¹ H NMR spectrum of the compound 2	S 10
8.	¹³ C NMR spectrum of the compound 2	S 11
9.	¹ H NMR spectrum of the compound 6	S12
10.	13 C NMR spectrum of the compound 6	S13
11.	¹ H NMR spectrum of the compound 26	S 14
12.	13 C NMR spectrum of the compound 26	S15
13.	¹ H NMR spectrum of the compound 3	S16
14.	¹³ C NMR spectrum of the compound 3	S17
15.	¹ H NMR spectrum of the compound 7	S18
16.	¹³ C NMR spectrum of the compound 7	S19
17.	¹ H NMR spectrum of the compound 27	S20

- 18. ¹³C NMR spectrum of the compound **27**
- 19. ¹H NMR spectrum of the compound **4**
- 20. ¹³C NMR spectrum of the compound **4**
- 21. ¹H NMR spectrum of the compound **8**
- 13 C NMR spectrum of the compound **8** 22.
- 23. ¹H NMR spectrum of the compound **28**
- when the many of the second 24. ¹³C NMR spectrum of the compound **28**

S23

S21

S26

Σ.	240	LLU	200	100	100	140		120		100			č			20	×	
File name: 1-C13		I-C13	Operator: root	SF: 125.7422 MHz		NSC	: 187	PW: 0.00 usec, RG: 51200			SI: 65536							
	Date: 20-Sep	-2011	Solvent: DMSO	SV	V: 32680 Hz	TE	OK	1	Q: 1.57 s	ec, RD: 0.	00 sec		Parameter	fle, XV	VIN-NMR	Version 3.5		

ACCEPTED MANUSCRIPT	
865.35 149.96 190.20 27.4 27.33 25.30	
25-C13	
Z40 Z20 Z00 160 140 120 100 60 60 40 20 File name: 25-C13 Operator: mot SE: 125.7422 MHz NSC: 175 PW: 0.00 uses: PC: 51200 PI: 65536	U

E		150.27 156.33	139.400 134.53 127.00	24.54	
6-C13					
	6 NH				
240 220	200	180 160	140	120 100 80	60 40 20 0
File name: 6-C13	Operator: root	SF: 125.7422 MHz	NSC: 236	PW: 0.00 usec, RG: 51200	SI: 65536
Date: 20-Sep-2011	Solvent: DMSO	SW: 32680 Hz	TE: 0 K	AQ: 1.57 sec, RD: 0.00 sec	Parameter file, XWIN-NMR Version 3.5

File name: 3-C13	Operator: root	SF: 125.7422 MHz	NSC: 540	PW: 0.00 usec, RG: 51200	SI: 65536
Date: 10-Apr-2012	Solvent: DMSO	SW: 32680 Hz	TE: 0 K	AQ: 1.57 sec, RD: 0.00 sec	Parameter file, XWIN-NMR Version 3.5

7-C13

240 220	200	180 160	140	120	100	80	60	40	20	0
File name: 7-C13	Operator: root	SF: 125.7422 MHz	NSC: 51	PW: 0	.00 usec, RG: 512	200		SI: 65536		
Date: 03-Apr-2012	Solvent: dmso	SW: 32680 Hz	TE: 0 K	AQ: 1.	57 sec, RD: 0.00	sec	Paramete	er file, XWIN-NMR	Version 3.5	

