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Rapid access to cis-cyclobutane c-amino acids in enantiomerically pure form
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The (+)-(1R,2S) and (�)-(1S,2R) stereoisomers of 2-(aminomethyl)cyclobutane-1-carboxylic acid have
been prepared using a short and efficient strategy, which employs the photochemical [2+2] cycloaddition
reaction between ethylene and an unsaturated c-lactam as the key step.
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c-Aminobutyric acid (GABA) plays a key role as a neurotrans-
mitter in the mammalian central nervous system. A wide variety
of derivatives of GABA have therefore been of interest to chemists
and pharmacologists and some structural analogues are of signifi-
cant therapeutic value.1 Independently, in the rapidly developing
area of foldamer science,2 oligopeptides containing c-amino acids
have been shown to adopt well-defined conformations.3–5 Follow-
ing the lead from the related area of oligomers of cyclic b-amino
acids,6 peptides which incorporate cyclic c-amino acids are now
becoming a focus of attention due to the additional conformational
restrictions which are imposed by the rigidified backbone.
Recently, Gellman observed helical conformations in a/c- and b/
c-peptides containing cis-cyclohexyl c-amino acids,4 while Smith
reported a parallel sheet structure for trimers of a trans-cyclopro-
pyl c-amino acid.5 Despite recent advances in general synthetic
methods,7 access to cyclic c-amino acids in enantiomerically pure
form remains something of a challenge.8

In order to expand the inventory of readily available backbone-
restricted c-amino acid building blocks, we sought an efficient
route to the cis-cyclobutane c-amino acid 1. Only two previous
syntheses of this compound in enantiomerically pure form have
been described; they are lengthy (>8 steps)9 or employ polymer
supported enzymes and reagents leading to only one enantiomer.10

Inspired by recent successes in the synthesis of cis-cyclobutane
b-amino acids,11 we felt that a photochemical approach, schema-
tised in Figure 1, represented an attractive alternative. There is
some precedent for [2+2] photocycloaddition reactions of alkenes
ll rights reserved.

: +33 1 6915 6278.
).
with unsaturated c-lactams bearing substituents at ring carbons.12

While diastereoselectivity in intermolecular [2+2] enone/alkene
photocycloadditions is something of a hit-or-miss affair, notably
with small unhindered alkenes such as ethylene, we reasoned that
the presence of a chiral, non racemic, removable substituent on the
ring nitrogen should in any case facilitate separation of diastereo-
mers and thus provide a very rapid entry to the target structure.

Initial investigations were carried out to identify a convenient
stereogenic nitrogen substituent for the 2-pyrrolinone core. A rep-
resentative structure of each of three substituent types—acyl, oxya-
cyl and alkyl—was selected on the basis of its ready (commercial)
availability (Scheme 1). The N-acyl and N-oxyacyl compounds, 3
and 4, were each derived from 4-trimethylsilyloxy-2-pyrrolidinone
2, which was prepared efficiently from b-hydroxy-GABA according
to a literature procedure.13 Reaction of 2 with the appropriate chiral
acid chloride in basic conditions introduced the N-substituent, and
acidic work-up hydrolysed the silyl ether. Straightforward dehy-
dration using mesyl chloride and triethylamine provided 3 and 4
in 58 and 52% yields, respectively, for the three steps from 2. The
N-alkyl 2-pyrrolinone 5 was prepared in a single step (70% yield)
from 2,5-dimethoxy-2,5-dihydrofuran and (S)-a-methylbenzyl-
amine, using a minor adaptation of the literature procedure.14

Each of the 2-pyrrolinones 3–5 was irradiated for 90 min
(400 W lamp, Pyrex filter) in acetone solution while ethylene was
bubbled through the mixture (Scheme 2). In these conditions, the
solvent is probably acting as a photosensitiser; reactions carried
out using non-sensitising solvents (acetonitrile; CH2Cl2) gave much
lower conversions. Results obtained in acetone are summarised in
Table 1. In each case, the desired cyclobutane adducts 6–8 were
formed in good yield, exclusively with a cis-configuration at the
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Figure 1. The photochemical strategy for access to the title compounds.
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Table 1
Photochemical [2+2] cycloaddition reactions of chiral 2-pyrrolinones 3–5 as shown in
Scheme 2

Entry Substrate Product Yield
(%)

Diastereomer
ratio

Diastereomer
separation

1 3 6 76 �50:50 No
2 4 7 71 �50:50 No
3 5 8 67 55:45 Yes
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ring junction. The diastereoselectivity was negligible, as might be
expected with substrates having stereogenic centres which are
not in the immediate vicinity of the reacting enone moiety. A key
observation, though, was that the chromatographic separation of
diastereomers of product 8 was very simple (15–40 lm silica gel;
petroleum ether/EtOAc gradient 4:1 to 1:1): preparatively, 8a
and 8b were obtained in 30% and 37% yields, respectively. Given
the rapidity of the new access to these enantiomerically pure inter-
mediates, obtained easily on gramme scale (around 10 mmol), we
pursued the synthesis of the target c-amino acid using this route.

The two-step transformation of 8a or 8b into the title com-
pounds has been reported,9 and we initially considered a one-step
operation. Indeed, in a test experiment, when a solution of the dia-
stereomeric mixture 8a/8b in 6 M HCl was heated under reflux for
18 h, the target c-amino acid was isolated in 48% yield after elution
through cation-exchange resin (Scheme 3). However samples ob-
tained in this way were not of satisfactory purity, and a less drastic
sequence was sought.

The synthesis of each enantiomer of the title compound, and—
importantly—their N-protected derivatives, was best achieved as
shown in Scheme 4. The N-alkyl substituent of each stereoisomer
of 8 was replaced by a Boc group in a two-step operation, via 9,
to introduce the protecting group and to facilitate the ring opening.
Each new derivative 10 was hydrolysed smoothly with lithium
hydroxide to provide the N-Boc c-amino acids 11. These N-pro-
tected derivatives are a convenient form for amino acid storage
and also a starting point for peptide synthesis. To complete the
synthesis of the free c-amino acids, each derivative 11 was treated
at rt with TFA then eluted through a cation exchange resin (H+

form), using ammonium hydroxide to give the zwitterionic forms
of 1 in near-quantitative yields. All compounds shown in Scheme
4 had spectral and analytical data in complete agreement with
their assigned structure.15–17

In summary, we have established a very rapid photochemical
approach for the synthesis of cis-cyclobutane c-amino acids and
N-protected derivatives in enantiomerically pure form, validated
at present on a several-millimolar scale. Starting from readily
available (commercial) starting materials, this procedure requires
only four synthetic operations and one chromatographic separa-
tion to obtain both enantiomers of the building blocks 11, and con-
stitutes a concise and attractive alternative to the other existing
routes to the title compounds and their derivatives.
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