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a b s t r a c t

A novel series of highly selective JNK inhibitors based on the 4-quinolone scaffold was designed and
synthesized. Structure based drug design was utilized to guide the compound design as well as improve-
ments in the physicochemical properties of the series. Compound (13c) has an IC50 of 62/170 nM for
JNK1/2, excellent kinase selectivity and impressive efficacy in a rodent asthma model.

Published by Elsevier Ltd.
The c-Jun N-terminal kinases (JNKs) are a family of serine/thre-
onine protein kinases of the mitogen-activated protein kinase
(MAPK) group along with p38 and ERK.1–3 JNKs can be expressed
as 10 different isoforms by mRNA alternative splicing of three
highly related genes, JNK1, JNK2 and JNK3.4 While JNK1 and
JNK2 are found to be ubiquitously expressed, JNK3 is principally
present in the brain, cardiac muscle, and testis.5 Based on the role
of JNK in regulating members of the activator protein-1 (AP-1)
transcription factors and other cellular factors implicated in gene
expression, cellular survival and proliferation in response to cyto-
kines and growth factors, inhibiting JNK may have many potential
therapeutic utilities.6,7 Consequently, many chemotypes of JNK
inhibitors have been reported in the literature.8–19

JNK plays a critical role in T cell signaling and has been shown
to regulate the expression or function of a number of proinflamma-
tory cytokines (TNFa, IL-2, IL-6, etc.), that are central to many
human inflammatory disorders.6 As such, JNK inhibitors have the
potential to be immuno-modulatory agents and are of therapeutic
interest for the treatment of rheumatoid arthritis and asthma.
Since both JNK1 and JNK2 are implicated, dual JNK1/2 inhibitors
are developed.
Ltd.

: +1 650 859 3153.
This manuscript describes our effort to discover a novel and
selective class of JNK inhibitors. A high throughput screening cam-
paign of a compound library yielded hits from several distinct
chemotypes including the quinazoline-dione (1) shown in Figure
1. Although 1 had rather modest potency against JNK1 and 2
enzymes, it exhibited exquisite selectivity against other kinases
(only inhibited JNK1/2/3, across a panel of 317 kinases). More elab-
orate analogs (2, 3) showed a 5- to 8-fold improvement in potency.

Combining the knowledge from early SAR taken together with
published reports on JNK inhibitors from Takeda (4),8,9 a novel
series of 4-quinolone JNK inhibitors were derived as exemplified
by compound 5, Figure 1. Initial profiling of several compounds
from this series revealed that the molecules suffered from poor
physicochemical properties including high lipophilicity, high pro-
tein binding, and low solubility. Optimization efforts subsequently
focused on reducing the lipophilicity and protein binding while
improving intrinsic potency for JNK 1 and JNK2.

Synthesis of these compounds was accomplished as outlined in
Schemes 1–3.

4-Quinolone analogs were synthesized starting with commer-
cially available 2-nitro-4-chloro-benzoic acid (6). A four step
sequence (acid chloride formation, malonate addition, base hydro-
lysis and de-carboxylation) led to ketone 7. The nitro group of 7
was reduced to amino analog (8) by iron powder, which was
further elaborated using copper and PhI to afford diphenylaniline
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Figure 1. Hit evolution to 4-quinolone.
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(9). Aldol condensation, dehydration, and reduction gave rise to 10,
then 11. Reaction of 11 with methyl oxalyl chloride provided inter-
mediate 12. Without isolation, 12 was heated with a base to give
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Scheme 1. Reagents and conditions: (i) (COCl)2, NaH/CH(CO2Et)2 in THF 50%; (ii) Fe/NH4

(iv) 2 equiv 2 N NaOH, 4-MeNHSO2-PhCHO, in MeOH, overnight, rt 40%. (v) H2, Pd/C, THF
75%.
the final product 13. Compounds (13a–f) were synthesized based
on this route.

Aza-4-quinolone derivatives were made based on Scheme 2.
Weinreb amide (15) was made from a substituted nicotinic acid
(14). The amide (15) was further converted to the corresponding
ketone (16) in good yield. Aniline displacement of 16 gave com-
pound 17, which underwent aldol condensation and subsequent
reduction by hydrogen to afford 18. Compound 18 was cyclized
with ClCOCO2Me to provide 19a–f.

Scheme 3 highlights the synthetic route to access benzylic
replacement of the 4-quinolone series. Compound 20 can be syn-
thesized using conditions described in Scheme 1, step ii–iii from
4-fluoro-2-nitro benzoic acid. Similarly, Weinreb amide (21) was
made from 20 and was further converted to a,b-unsaturated vinyl
ketone (22). Michael addition with 4-methylsulfonyl piperidine
afforded 23, which underwent cyclization with ClCOCO2Me with
a base to give 24a–e.

The compounds were evaluated for their ability to inhibit JNK1
and JNK2 using 33P radiometric assay,21 their JNK cellular potency
(c-Jun)22 and their propensity to bind to human serum albumin.
Results are shown in Tables 1–3. A higher throughput surrogate as-
say for measuring a compound’s affinity for human serum protein
was developed. The JNK1 enzyme assay was modified to incorpo-
rate 40% human serum albumin and inhibitors were tested for
their ability to inhibit JNK1 both in the presence and absence of
40% human serum albumin. Compounds were subsequently
ranked to de-prioritize those that lost the most potency in the
presence of human serum albumin. Compounds with high protein
binding were typically highly lipophilic which often led to poor
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/ethyl acetate (1:1), 95%; (vi) ClCOCO2Me in toluene, rt, 4 h; (vii) NaHMDS in MeOH,
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cellular potency and correlated with poor physicochemical proper-
ties such as low aqueous solubility.

The quinolone series was initially optimized at the 4-position of
benzyl ring and 7-position of quinolone as X and R in Table 1. The
aim was to reduce the overall lipophilicity while maintaining or
improving intrinsic potency for JNK1 and JNK2. Substitution from
Br to Cl and F at the 7-position resulted in a significant reduction
in lipophilicity, which was reflected in the ratio of enzyme activity
of JNK1 in the presence and absence of 40% human serum albumin.
Fluoro analogs being less lipophilic and less protein bound had the
lowest ratio. Interestingly, the halogen change did not cause a loss
of intrinsic potency.

The initial SAR effort and computer modeling supported the
binding mode where the quinolone carbonyl oxygen moiety made
a single interaction with Met (111) on the hinge domain in the ATP
binding pocket of JNK1. The benzyl group was modeled to optimize
lipophilic interactions with the protein. The 4-position of the ben-
zyl group (R) directed out towards solvent exposed region of the
protein. This binding mode was later confirmed by the X-ray struc-
ture with compound 13g (Table 2) bound to the JNK1b (Fig. 2).20

Compound design was primarily guided by this structural
information.

Further evolution of the series was based on combining the
common binding motif between the quinolone and reported azain-
dazoles16 to give aza-quinolone.

Azaindazole in Figure 3 is AstraZeneca’s JNK3 Inhibitor16 with
potency of 0.8 lM in IC50. Shown in Table 2, the aza-quinolone
(19a-f) had improved cellular potency as compared to quinolone



Table 1
4-Quinolone analogs

X N

O

13a-gRCO
2
Me

Compds X R JNK1/JNK2 IC50, nMa 40% HS shift c-Jun (lM)b

4 43/72 110 na

13a Cl SO2NHMe 47/170 20 na

13b Cl
N
H

O
38/94 26 na

13c Cl
N
H

O
OH 62/170 22 3.0

13d Cl NNS
O O

30/50 17 1.0

13e F NNS
O O

30/70 7.5 1.7

13f F NS
O O

OH 50/200 6.8 na

13g F S
OH

O O
58/219 9.1 2.5

na = no data obtained.
a Compounds were characterized by mass spectral, 1H NMR, elemental analysis and mp. IC50 values are an average of multiple determinations (n P 2). Assay conditions are

described in Ref. 21.
b Cellular activity was measured based on the description in Ref. 22.

Table 2
Aza-quinolone analogs

NY N

O

19a-f

W

RCO2Me

Z

W=CH for all compounds
except 15c where W=N

Compds Y Z R JNK1/JNK2 IC50, nMa 40% HS shift c-Jun (lM)b

19a Me H
N
H

O
OH 30/64 13 4.2

19b Me H NNS
O O

18/28 8.4 0.56

19c Me H
N
H

O
45/87 6.8 4.7

19d Me NH2
S

O O
14/32 14 0.86

19e CF3 H S
O O

82/220 11 2.7

19f CF3 H
N
H

O
OH 80/176 7.9 4.3

a Compounds were characterized by mass spectral, 1H NMR, elemental analysis and mp. IC50 values are an average of multiple determinations (n P 2). Assay conditions are
described in Ref. 21.

b Cellular activity was measured based on the description in Ref. 22.
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Table 3
Benzyl replacement analogs

QU N

O

24a-g

NR'

CO2Me

Compds U Q NR0 JNK1/JNK2 IC50, nMa 40% HS shift c-Jun (lM)b

24a F CH N N S
OO

65/507 4.5 na

24b F CH N S
OO

23/140 10 0.83

24c F CH N O 114/900 3 na

24d F CH
N

S
O O

130/1310 3 na

24e F CH
N

S
OO

53/535 2.4 na

24f CH3 N N S
OO

na/190 8.3 0.43

24g CF3 N N S
OO

na/290 3.4 4.3

na = no data obtained.
a Compounds were characterized by mass spectral, 1H NMR, elemental analysis and mp. IC50 values are an average of multiple determinations (n P 2). Assay conditions are

described in Ref. 21.
b Cellular activity was measured based on the description in Ref. 22.

Figure 2. X-ray structure of compound 13g bound to JNK1b ATP binding pocket.

Figure 3. Overlay of quinolo
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derivatives shown in Table 1. The addition of the nitrogen, presum-
ably, lowered the lipophilicity, lower serum albumin binding pro-
pensity, and lower non-specific binding, thus potent cellular
potency.

To further optimize the lipophilic interactions of the series with
JNK, the benzyl group was replaced with saturated rings. Shown in
Table 3, compound 24a–g maintained good potency and had re-
duced protein binding as reflected in the lower shift value in 40%
HS shift assay.

Compounds from each sub-class were then characterized in a
panel of assays for their physicochemical properties. Shown in
Table 4, these compounds demonstrated reasonable solubility,
good permeability with no or very modest efflux potential.
ne with azaindazole.16



Table 5
Pharmacokinetic data of 13c

Species Route Cla T1/2
b %Fc

Rat IVd 25 60
POe 6
POf 43
IP 100

Dog IVd 3.4 150
POe 40

a Unit: ml/min-kg.
b Unit: min.
c Oral bioavailability.
d Dose: 3 mpk.
e 3 mpk in hydroxypropyl methycellulose (HPMC) (suspension).
f 3 mpk in labrasol (solution).

Table 6
Kinase selectivity profile of 13cb

Kinase Kd
a Kinase

JNK1 0.062 P38-d
JNK2 0.170 IRAK1
IKK-b >10 DAPK3
p38-c >10 MAPK15
STK17A >10 DAPK2
DAPK1 >10 MAP2K4

a Kd of a kinase in lM.
b The rest of kinases in the penal23,24 (unlisted in this table) all have Kd of >

Figure 4. Compound 13c in rat model of Ova-Induced Lung Hyper-responsiveness. (A) C
kinase activity as measured in lung tissue by ex vivo substrate phosphorylation assay.

Table 4
Physicochemical properties

Compds PSA Solubilitya CACO2 (AB) b ERc

13c 80 8.5 2.8 7
13d 83 23 2.4 2
13e 83 37 NAd NAd

19a 90 78 1.3 15
24b 74 34 16 2

a Solubility was measured in a standard PO4 buffer system with pH of 6.4, unit:
lg/mL.

b unit: �10�6 cm/min.
c ER = AB/BA.
d NA = not measured.
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Table 5 illustrates that compound 13c had a good balance of po-
tency and properties, and was further characterized in vivo. It
showed good oral bioavailability in two species. The in vivo clear-
ance rate of 13c in rat and dog can be characterized as medium and
low, respectively.

The kinase selectivity of 13c was then evaluated against a com-
mercial panel of 317 kinases.23,24 As Table 6 indicates that 13c
exhibited excellent kinase selectivity with potency observed for
only JNK enzymes.

Since compound 13c exhibited reasonable pharmacokinetics
and good kinase selectivity, it was evaluated in a rat asthma model.
Ovalbumin-induced allergic asthma is a widely used model to
reproduce the airway eosinophilia, pulmonary inflammation and
elevated IgE levels associated with the disease.

Results are summarized in Figure 4, which shows that com-
pound 13c when dosed at 10 mg/pk s.c. inhibited neutrophil infil-
tration in BAL (Bronchial Alveolar Lavage) by 55% at 4hrs post-
challenge and inhibited the total white blood cells infiltration in
BAL by 40%. These changes correlated with a proportional loss in
the relative JNK activity observed in the lung.25,26 Results for
reduction in airway neutrophil infiltration are comparable to those
observed for dexamethasone or p38 inhibitors, such as SB 203580
or LY2228820, in similar studies.

In summary, a potent, selective and novel series of JNK inhibi-
tors was discovered. Structure based drug design was used to opti-
mize not only intrinsic potency, but also the physicochemical
properties of the series. Compound 13c showed significant sup-
pression of inflammatory cell infiltration in the rat asthma model,
Kd
a Kinase Kd

a

>10 SgK085 >10
>10 MAPK7 >10
>10 DCAMKL3 >10
>10 RIOK2 >10
>10 CDK7 >10
>10 RPS6KA1 >10

10 lM; all Kds were determined in DiscoveRX.

hanges to BAL leukocyte infiltrates at 4 h post intranasal challenge; (B) Relative JNK
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suggesting that JNK inhibition may be attractive as a novel thera-
peutic approach for the treatment of asthma.
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