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Abstract—Syntheses of synthetic analogues of pondaplin 1 have been achieved. Final macrolide construction was accomplished
using a Keck macrolactonization reaction.
� 2005 Elsevier Ltd. All rights reserved.
Pondaplin 1,1 a novel cyclic prenylated phenylpropa-
noid was recently isolated from Annona glabra L.
(Annonaceae).2,3 A number of bioactive Annonaceous
acetogenins had been earlier isolated from this spe-
cies.2,4–6 Pondaplin 1 (Fig. 1) was reported to show
selective cytotoxicities in six human solid tumor cell
lines. Many related phenylpropanoids exhibit a broad
range of biological activities such as antimicrobial, anti-
cancer, and hypotensive properties.7–9 Moreover, phenyl
propanoid derivatives are known to inhibit enzymes
such as cAMP phosphodiesterase and prostaglandin
synthetase.10,11

The simple and interesting structure of pondaplin 1 and
its significant biological profile against human solid
tumor cell lines made it an intriguing target for total
synthesis. We devised a strategy for the total synthesis
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Figure 1. Structure of pondaplin.
of 1 starting from 4-hydroxybenzadehyde 2 using ring-
closing metathesis (RCM)12 as the key step (Scheme
1). Disappointingly 7 did not provide the target mole-
cule but instead gave an oligomer. In order to access
the core structure of pondaplin, diallyl ether 9 was pre-
pared from 6 and subjected to RCM conditions. This
attempt also failed to give the expected compound,
an oligomer was isolated again (Scheme 1). After this
work was completed, similar observations were pub-
lished by Bressy and Piva.13

Since the RCM strategy had failed, an alternative
approach was established to achieve the total synthesis
of pondaplin. Propargyl alcohol was protected as trityl
ether 10, which was subjected to methoxycarbonylation
to afford 11 in 86% yield. The conjugate addition of lith-
ium dimethylcuprate to 11 in ether at �100 to �85 �C
provided Z-ester 12 as the sole product in 90% yield.
The reduction of 12 with LAH/AlCl3 afforded the corre-
sponding Z-allylic alcohol 13 in 74% yield. Standard
bromination conditions furnished bromide 14 in 62%
yield.14 Bromide 14 was used in an alkylation reaction
with 4-hydroxybenzaldehyde 2 to give O-alkylated
compound 15 in 63% yield. Modified Wadsworth–
Emmons condensation15 on 4-substituted benzaldehyde
15 using bis(2,2,2-trifluoroethyl)(methoxycarbonyl-
methyl)phosphonate in THF at �78 �C afforded Z-ethyl
ester 16 in 88% yield. Removal of the trityl group fol-
lowed by saponification of 17 afforded the correspond-
ing Z-hydroxy acid 1816 in 99% yield. The olefinic
protons in 16–18 (H-7 and H-8) showed coupling con-
stants of 12.6 Hz. Subjecting hydroxy acid 18 to intra-
molecular Keck coupling conditions in the presence of
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Scheme 2. Reagents and conditions: (a) EtMgBr, THF, 0 �C, 1 h, then ClCOOMe, 2 h, 86%; (b) Me2CuLi, THF, �100 to �85 �C, 3 h, 90%; (c)
LAH, AlCl3, ether, 0 �C, 3 h, 74%; (d) MsCl, LiBr, Et3N, MeCN, 0 �C, 2.5 h, 62%; (e) NaH, p-hydroxybenzaldehyde 2, THF, 0 �C, 4 h, 63%; (f)
NaH, (CF3CH2O)2P(O)CH2COOMe, 0 �C, 1 h, �78 �C, 2 h, 88%; (g) PPTS, 5:1 DCM–MeOH, rt, 2 h, 67%; (h) aq LiOH, MeOH, rt, 4 h, 99%; (i)
DCC, DMAP, DCM, 0 �C–rt, 12 h, 55%.
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Scheme 1. Reagents and conditions: (a) allyl bromide, acetone, K2CO3, reflux, 1 h, 83%; (b) Ph3P@CHCOOEt, MeOH, 0 �C, 6 h, 98%; (c) ethanol,
20% NaOH, 4 h, 96%; (d) 2-methyl-2-propen-1-ol, DCC, DMAP, ether, 20 �C, 79%; (e) benzene, reflux; (f) allyl alcohol, DCC, DMAP, ether, 20 �C,
90%; (g) benzene, reflux.
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1,3-dicyclohexylcarbodiimide and DMAP in DCM
at 0 �C did not give the expected product 1, instead a
dimer17 was formed (Scheme 2).

The 1H NMR spectrum of the dimer showed the olefinic
protons (H-7 and H-8) at 6.50 ppm (J = 14.8 Hz) and
7.60 ppm (J = 15.6 Hz), respectively, indicating a trans
double bond. Our 1H NMR data match with the dimer
reported by Joullie and co-workers,14b but interestingly
a recent paper18 reports the total synthesis of pondaplin
by intramolecular cyclization using Keck coupling
conditions.

Since both these approaches gave unsatisfactory results
in the final step, we next investigated an alternative
strategy as shown in Scheme 3. Trityl ether 15 was
deprotected to give alcohol 19, which was acylated with
bromoacetyl bromide to give the bromo ester 2019 in
nearly quantitative yield. Further treatment of bromide
20 with P(OEt)3 and an in situ Horner–Wadsworth–
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Scheme 3. Reagents and conditions: (a) BrCOCH2Br, 2,6-lutidine, 0 �C, 99%; (b) NaH, P(OEt)3, reflux, 2 h, 62%; (c) SmI2, THF, 0 �C, 2 h.
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Emmons reaction in the presence of NaH at reflux did
not provide the required product 1 but instead gave an
a,b-unsaturated ester 21.20 The coupling constants of
the newly formed double bond in compound 21 were
15.8 Hz (H-7 and H-8), indicating the trans nature of
the olefinic double bond. 1H NMR, 13C NMR, and
mass spectroscopy support the assigned structure. Yet
another alternative approach was employed on bromide
20, but treatment with SmI2 also failed to afford the nat-
ural product 1.
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Scheme 4. Reagents and conditions: (a) Ph3P@CHCOOMe, MeOH, 6 h, 98%
PPTS, 5:1 DCM–MeOH, rt, 2 h, 67%; (e) aq LiOH, MeOH, rt, 4 h, 99%; (f
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Scheme 5. (a) Prenyl bromide, acetone, K2CO3, reflux, 1 h, 92%; (b) SeO2, E
4 h, 98%; (e) DCC, DMAP, DCM, 0 �C–rt, 12 h, 55%.
We considered that the double bond reduction of the
a,b-unsaturated ester might favor the cyclization. To
examine this, the hydroxy ester 24 was prepared from
4-hydroxybenzaldehyde 2 in two steps. The two carbon
Wittig olefination, followed by ester double bond reduc-
tion with Mg/MeOH afforded 24 in 94% overall yield for
the two steps. O-Alkylation of 24 with bromide 14 fol-
lowed by deprotection of the trityl ether afforded allyl
alcohol 26. Ester hydrolysis of 26 followed by intra-
molecular cyclization using Keck coupling conditions
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allowed macrolactonization to proceed to give the
saturated analogue I21 of pondaplin in good yield
(Scheme 4).

Another pondaplin analogue II was synthesized from
saturated ester 24 (Scheme 5). Compound 24 was sub-
jected to alkylation with prenyl bromide to afford O-pre-
nyl ether 28 in 92% yield. Further allylic oxidation was
achieved using SeO2 to afford E-aldehyde 29. The alde-
hyde was reduced with NaBH4 in MeOH to give the cor-
responding E-allylic alcohol 30 in 85% yield. Ester
hydrolysis followed by intramolecular cyclization with
DCC/DMAP in CH2Cl2 at 0 �C afforded the saturated
analogue II (Scheme 5).22

In conclusion, syntheses of two pondaplin analogues
have been achieved. Further studies directed toward
the total synthesis of pondaplin 1 are currently under-
way in our laboratory and the results of these investiga-
tions will be reported in due course.
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