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Abstract—Described herein is the synthesis of a hapten of biocyclo[2,2,2]octene 5 designed to mimic the exo transition-state of an
aza Diels–Alder reaction. Immunization of rabbits with this hapten provided polyclonal antibodies, Aza-BSA-3, which were used
to synthesize adduct 4b in the first reported antibody-catalyzed exo Diels–Alder reaction. # 2002 Elsevier Science Ltd. All rights
reserved.

The Diels–Alder reaction is one of the most important
carbon–carbon forming processes in organic chemistry. It
is also a versatile tool for stereoselective synthesis of six-
membered ring compounds.1 The cycloaddition of a diene
and a dienophile is a bimolecular process that has a large
entropic barrier, with a typical activation entropy in the
range of �30 to �40 cal K�1 mol�1 (1 cal=4.184 J). To
date, there is no unequivocal proof for the existence of
natural Diels–Alderases, although plausible products from
enzyme-catalyzed Diels–Alder reactions have been repor-
ted.2 Using tailored catalysts from mammalian immune
systems, several groups have successfully generated specific
antibodies that catalyzed Diels–Alder reactions, including
homo-Diels–Alder reactions3 and hetero-Diels–Alder
reactions.4 Herein we reported the first example of an
antibody-catalyzed aza Diels–Alder reaction.

The reaction selected for investigation was the cyclo-
addition of an unsymmetrical diene 1 to a chiral dieno-
phile 2 (Scheme 1). This choice was based on the
following reasons. (i) The cycloaddition of an aza dieno-
phile to a diene is a very useful synthetic method. For
example, through further oxidization of product double
bonds, our designed reaction would offer a new facile
synthesis of biologically active molecules, including
analogues and homologues of aza glucose. (ii) Under

the catalysis of a mixed acid (1 equiv CH3SO3H and 1
equiv CF3CO2H), reaction of the diene 1 with the dieno-
phile 2 would predominantly produce the favored
adduct 4a, with the ratio of the endo adduct 4a and the
exo adduct 4b being 4:1, whereas utilization of anti-
bodies can reroute the reaction and afford selective for-
mation of the disfavored exo adduct 4b. (iii) The hapten
of bicyclo[2,2,2]octene 5 was designed to mimic the exo
boat-shaped transition-state 3b, which shares the same
relative and absolute carbon configurations.

Hapten 5 was initially synthesized via the route shown
in Scheme 2. The required alcohol 6 was prepared from
an allylic sulfone and ethylene epoxy according to lit-
erature procedures.5 Protection of the primary alcohol 6
with iodomethane gave the methoxy ether 7. The sub-
strate diene 8 was prepared by reference to methodology
developed by Bävckall.5 Chiral dienophile 2 was syn-
thesized as reported.6 A key reaction step, the asym-
metric aza Diels–Alder reaction of cyclohexadiene 8
with the chiral dienophile 2, was subsequently carried
out, producing only the exo adduct 9 under mixed pro-
tic acid catalysis (1 equiv CF3CO2H and 1 equiv
CH3SO3H). The desired hapten 5 was obtained following
several additional steps, including hydrolysis of the ethyl
ester of compound 9 and condensation with methyl
g-amino butylrate, followed by hydrolysis of the methyl
ester of compound 11.7

Immunogens 12 and 13 were prepared by coupling car-
rier protein Bovine Serum Albumin (BSA) or Flow g
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Scheme 1. The antibody-catalyzed aza Diels–Alder reaction and design of the transition-state analogue 5.

Scheme 2. Reagents and conditions: (a) Ag2O, CaSO4, MeI, rt, 3 days, 100%; (b) tBuOK, tBuOH, reflux, 8 h, 84%; (c) CF3CO2H (1 equiv),
CH3SO3H (1 equiv), CH2Cl2, �78 �C 2 h to rt overnight, 67%; (d) 2N NaOH, 90% EtOH, 60 �C, overnight, 89%; (e) HCl.H2N(CH2)3CO2Me,
N-methyl morpholine, 2-chloro-4,6-dimethoxy-1,3,5-triazine, DMF, rt, 24 h, 86%; (f) 2N NaOH, 90% MeOH, 60 �C, 3 h, 90%; (g) EDCI, DMF,
10 mmol/L PBS buffer (pH 7.2), rt, 5 h.
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Globin (FgG) in PBS (pH 7.2) using 1-(3-dimethylami-
nopropyl)-3-ethyl carboimide hydrochloride (EDCI) as
condensation reagent. The immunized rabbits were bled
after 1-month post-immunization and the sera were
precipitated using saturated ammonium sulfate and
separated by ion exchange (DE-52) to remove undesired
serum proteins.8

By this procedure four polyclonal antibodies were
acquired. Kinetic experiments demonstrated that one
polyclonal antibody, Aza-BSA-3, could catalyze the
desired aza Diels–Alder reaction. The rate of the reac-
tion was measured by monitoring the disappearance of
the diene at 242 nm using reversed-phase high perfor-
mance liquid chromatography (HPLC). The catalyzed
reaction was performed under conditions of: diene 1
(370 mM); dienophile 2 (4000 mM); polyclonal antibody
(7.4 mM), 37 �C at pH 7.0 in a PBS (10 mM) buffer.
Initial rates of catalyzed reaction in the presence of
antibodies were measured within 5% completion of the
diene and corrected for background reaction in the
absence of antibody. The data so obtained were
employed to construct a Lineweaver–Burk plot, from
which the kinetic parameters were derived (Fig. 1).

Because dienophile 2 was in excess, the results were
observed to follow Michaelis–Menten kinetics of
pseudo-first-order reactions, where KM/Vmax and 1/
Vmax are respectively determined as the slope of the line
and the intercept of the vertical axis in Figure 1. The
values of kinetic parameters for the diene 1 were:
KM=833 mM, Vmax=1.82 mM/min, kcat=0.34 min�1.

According to our experiments, the polyclonal antibody
accepted as substrates the diene 1 and the dienophile 2
and produced the expected adduct 4b. The ratio of the
exo adduct 4b to endo adduct 4a was 13:1 under the
catalysis of Aza-BSA-3, while the ratio of exo adduct to
endo adduct was 1:4 under the catalysis of mixed protic
acid (1 equiv CF3CO2H and 1 equiv CH3SO3H).9

However, neither exo nor endo adduct could be detected
if the reaction was run without any catalysts. Addition
of an equimolar amount of inhibitor 10 to antibody-
catalyzed reactions resulted in complete inhibition, with
the reaction rate dropping to the background value.
This indicated that catalysis took place utilizing anti-
body binding sites. Controls were performed under the

same conditions using non-specific rabbit immuno-
globulin G, which showed no influence on the reaction
rate.

In summary, herein we report the first antibody-cata-
lyzed aza Diels–Alder reaction through an extension of
our previous study.10 Further kinetic analysis and
exploration of enantioselectivity under catalysis of
monoclonal antibodies are under way.
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