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ABSTRACT: A mild, reductive spirocyclization of indole-linked amides and lactams for the efficient and selective synthesis of
aza-spirocyclic indoline products is described. The catalytic reductive activation of tertiary amides or lactams by Vaska’s
complex with tetramethyldisiloxane as the terminal reductant allowed iminium ion formation, before a diastereoselective 5-
endo-trig spirocyclization of the tethered indole moiety was triggered. Terminal reduction affords the aza-spiroindoline products
in an overall highly chemoselective and diastereoselective one-pot process.

The aza-spiroindoline ring system is common to numerous
bioactive compounds and natural products that are

structurally and biologically relevant.1 These range from the
infamous poison strychnine 12 to the potent anticancer
compound vinblastine 2.3 Oxidized structural relatives include
the spirooxindoles4 of which horsefiline 3 is arguably the
simplest, but well-known,member (Scheme 1a). The prevalence
of this intricate ring system within important families of
compounds continues to attract the development of new
strategies and newmethods for their efficient synthesis. Whereas
tetrahydro-β-carbolines can be readily accessed by the classical
Pictet−Spengler reaction, and its many variants, between
tryptamine derivatives and aldehydes,5 building the aza-
spiroindoline core has proven to be more challenging due to
the propensity for rearomatization.6 Previous approaches have
typically employed reactive electrophilic intermediates (imidoyl
triflate 4a,6a−d π-allyl cation 4b,6e,f andN-acyl iminium 4c6g) for
accessing spirocyclic indolenines 5a−5c (Scheme 1b). A
subsequent reduction step after spirocyclization is, however,
required to generate aza-spiroindoline 6.
As part of our ongoing work toward structurally complex, sp3-

rich nitrogen-containing architectures based on an iridium-
catalyzed reductive activation of amides and lactams,7 we were
drawn to the idea of developing a new approach to the aza-
spiroindoline core. Our aim was to develop a direct and general
strategy from readily available starting materials that, through
the incorporation of multiple points of diversity in the products,
could be applied to both drug discovery and library generation.
Herein, we describe our findings.

Previous mechanistic studies on the Pictet−Spengler reaction
have established the existence of a dynamic interplay among
three isomeric cationic species [8a−8c (Scheme 2)],8 prior to
irreversible proton loss from 6-endo-trig cyclization intermediate
8b to afford rearomatized tetrahydro-β-carboline 9. We
reasoned that the use of Vaska’s catalyst 11 in conjunction
with tetramethyldisiloxane reductant 12 on suitable indole-
linked amide/lactam substrates not only would provide access to
these cationic intermediates9 but also could facilitate irreversible
hydridic interception of the resulting spiroindolenium inter-
mediate 8c. If this pathway outcompeted the alternative 6-endo-
trig pathway, reduced aza-spiroindoline 10, the interrupted
Pictet−Spengler product, would result.
To probe this concept, tryptamine-derived lactam 7a was

selected as a relevant model system and its reactivity toward
Vaska’s complex and various silanes was studied.
In accordance with the recent reductive functionalization

reaction of amides,10 a toluene solution of model substrate 7a at
room temperature was treated with Vaska’s catalyst 11 and 2
equiv of TMDS 12 (Scheme 1). Very pleasingly, aza-
spiroindoline 10a was indeed obtained in 55% NMR yield
after 60min (Table 1, entry 1). The reaction was selective for the
syn diastereoisomer (80:20 dr), and importantly, no sign of the
Pictet−Spengler product was detectable. With this excellent
proof of concept in hand, we turned to optimize the reaction for
both yield and diastereoselectivity. In contrast to previous
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studies, 3 equiv of TMDS was required to reach full conversion
(entry 2).11 Recourse to other silanes proved to be ineffective
(entries 3−5)12 but a solvent screen identified dichloromethane
as the best solvent, both for yield and for diastereocontrol.13

Furthermore, excellent diastereoselectivity (96:4 dr) was
achieved when the reaction temperature was decreased to −15
°C (entry 10).
With optimized conditions established, the scope of the

reaction with respect to the indole and the lactam moiety was
explored. Variations to the indole aromatic ring revealed that
both electron-withdrawing and electron-donating groups were

tolerated at positions 4−7 [10b−10g (Scheme 3)]. Exploiting
the possibility of generating and trapping a nucleophilic lithium
enolate of the lactam,14 we could readily synthesize α-
substituted starting materials and subject them to the reaction
conditions. This extra stereocenter provided control over the
relative configuration of the newly formed pyrrolidine ring (10i
and 10j). Attack of the cyclic iminium ion on the least hindered
face gave predominantly anti-10i, as proven by single-crystal X-
ray analysis. Substrates containing α-quaternary centers could
also be cyclized (10k and 10l), although the high steric
hindrance demanded longer reaction times as well as increased
catalyst loading. To showcase the chemoselectivity of the
catalytic system, ketone 7l was cyclized to give indoline 10l in
good yield, with the ketone carbonyl group remaining
unaffected. Remarkably, no epimer at the α-quaternary center
could be observed for this substrate or for primary alcohol 10k.
Medium-sized ring substrates derived from capro-, enantho-,
and caprylolactam could be cyclized (7m−7o to 10m−10o),
albeit in slightly reduced yield and diastereoselectivity.15

Acyclic amides also underwent spirocyclization, and various
aryl/heteroaryl (10p−10s) and sterically demanding amides
(10h and 10t−10y) were smoothly transformed into the desired
indolines in good to excellent yields, showing the general
applicability of this new methodology. Notably, pyridine 10s
was formed as a single anti diastereoisomer; its relative
configuration was determined by single-crystal X-ray diffraction
analysis. Interestingly, if substantial steric hindrance was
introduced at the amide α-position, diastereoselectivity was
improved to ≥95:5 dr (t-Bu 10u, adamantyl 10v, or α-diethyl
10h) but at the expense of increased reaction time (24 h) and
catalyst loading (5 mol %). Furthermore, branching at the
relatively distant β-position of the alkyl chain on the nitrogen
atom resulted in reduced reactivity and diastereocontrol (10x,
51:49 dr).16

In line with the observations of Taylor,6g we believe the origin
of diastereoselectivity is likely facial recognition between the
indole and the iminium ion in the key addition step (Scheme 5).
Two possible diastereoisomers can arise from the spirocycliza-
tion step. In the endo-transition structure, steric repulsion would
occur between any aliphatic cyclic or acyclic side chain and the
indole ring, resulting in a higher-energy transition structure then
in the exo case (Scheme 4, case 1). The observed diastereomeric
ratios of the products are in agreement with these observations,
particularly for bromo-substituted lactam 10f where the
proximity of the bromine atom appears to further enhance the

Scheme 1. (a) Examples of Aza-Spiroindoline Ring Systems
in Nature and (b) Known Aza-Spirocyclization
Methodologies via Reactive Cationic Intermediates

Table 1. Proof of Concept and Optimization Studies of
Model System 7a

entry solvent silane (equiv) temp yielda (%) drb

1 toluene TMDS (2) rt 55 80:20
2 toluene TMDS (3) rt 77 80:20
3 toluene PhSiH3 (3) rt 0 −
4 toluene Ph2SiH2 (3) rt 0 −
5 toluene Et3SiH (3) rt 0 −
6 THF TMDS (3) rt 32 86:14
7 CHCl3 TMDS (3) rt 74 66:34
8 CH2Cl2 TMDS (3) rt 93 90:10
9 CH2Cl2 TMDS (3) 0 °C 90 91:9
10 CH2Cl2 TMDS (3) −15 °C 91 96:4

a1H NMR yield determined against m-nitro dimethylaniline as an
internal standard. bDetermined by 1H NMR analysis of the crude
product.

Scheme 2. Proposed Iridium-Catalyzed Interrupted Pictet−
Spengler Reaction
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diastereocontrol.17 The seven-, eight-, and nine-membered
lactams seem to lack the rigidity needed for the steric clash to
hamper the addition. However, when the amide moiety was
relatively flat [i.e., derived from (hetero)aromatic carboxylic
acids, such as in 10p−10s], the steric clash in the endo-transition
structure would be minimized, thus reducing the differential in
energy and resulting in almost no observed diastereocontrol
(Scheme 4, case 2). In the case of pyridyl indoline 10s, π-
interactions between the electron-rich indole and the electron-
poor pyridine ring are likely to lower the energy of the endo-
transition structure even further when these rings are in the
proximity of each other, giving rise to the exclusive formation of
the anti diastereoisomer.
Moreover, when the lactam possesses an α-stereocenter,

diastereofacial control can be observed. This control is only
partial in the formation of α-alkyl 10i and 10j, as the addition of
the indole is naturally, but imperfectly, directed to the face
opposite the alkyl group. Substantial control at this position is
however observed when a carbonyl or a primary alcohol is
present (10k and 10l). We believe this is due to a stabilization of

Scheme 3. Scope of the Iridium-Catalyzed Reductive Spirocyclization Reactione

aWith 5 mol % catalyst, rt, 24 h. bWith 1 mol % catalyst, rt, 6 h. cWith 1 mol % catalyst, rt, 1 h. dWith 4 equiv of TMDS. eStandard conditions: 3
equiv of TMDS, 1 mol % catalyst, −15 °C, 1 h.

Scheme 4. Postulated Origins of Diastereocontrol Scheme 5. Double-Digit Parts per Million Catalyst Loading
on a Multigram Scale Reaction
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the vacant π-orbital of the iminium ion by the oxygen atom
(neighboring group participation) completely directing the
indole addition to the opposite face.
In addition to a broad scope, we also wanted to demonstrate

practical scalability, with a particular emphasis on the catalyst
loading. Following a series of investigations, we were pleased to
find that subjecting 3 g of the simple tryptamine derived lactam
7a to the same reaction conditions but with a catalyst loading of
25 ppm (240 μg) resulted in complete conversion to spirocyclic
indoline 10a.
In conclusion, an iridium(I)-catalyzed interrupted reductive

Pictet−Spengler reaction giving access to complex azaspirocy-
clic indoline structures from readily available indole-linked
lactams and amides has been developed. The reaction was
shown to be highly chemoselective and diastereoselective at the
newly formed contiguous stereocenters, and the very mild
reductive conditions allowed for good functional group
tolerance. Furthermore, the turnover number for the catalyst
was in the range of at least 40000 when the reaction was
performed on a gram scale.
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