Accepted Manuscript

Palladium-catalyzed direct *ortho*-acylation through an oxidative coupling of 2arylbenzothiazoles with benzylic alcohols

Qiuping Ding, Huafang Ji, Changqing Ye, Jiajia Wang, Junyan Wang, Liyun Zhou, Yiyuan Peng

PII: S0040-4020(13)01243-X

DOI: 10.1016/j.tet.2013.08.005

Reference: TET 24691

To appear in: *Tetrahedron*

Received Date: 20 March 2013

Revised Date: 16 July 2013

Accepted Date: 6 August 2013

Please cite this article as: Ding Q, Ji H, Ye C, Wang J, Wang J, Zhou L, Peng Y, Palladium-catalyzed direct *ortho*-acylation through an oxidative coupling of 2-arylbenzothiazoles with benzylic alcohols, *Tetrahedron* (2013), doi: 10.1016/j.tet.2013.08.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Palladium-catalyzed direct *ortho*-acylation through an oxidative coupling of 2arylbenzothiazoles with benzylic alcohols

Qiuping Ding,^{*} Huafang Ji, Changqing Ye, Jiajia Wang, Junyan Wang, Liyun Zhou and Yiyuan Peng*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang,

Jiangxi 330022, China

Abstract: An efficient protocol was developed for Pd-catalyzed direct C–H bond acylation by cross-dehydrogenative-coupling of arylbenzothiazoles and benzylic alcohols using *tert*-butyl hydroperoxide (TBHP) as the oxidant. The acylation reactions exhibit good reactivities and excellent regioselectivity.

Keywords: *ortho*-acylation; 2-arylbenzothiazoles; benzylic alcohols; t*ert*-butyl hydroperoxide

Introduction

Transition-metal-catalyzed intermolecular cross-dehydrogenative-coupling (CDC) of inert C–H bonds has recently emerged as a powerful method for the construction of new

^{*} Corresponding author □ Tel.: +86 791 88120396; fax: +86 791 88120396; E-mail: <u>dqpjxnu@gmail.com</u> (Q. Ding); <u>yiyuanpeng@yahoo.com</u> (Y. Peng).

C-C bonds and C-X (X = N, O, S, X) bonds.¹ The combination of transition-metalcatalysts and directing groups is very important to success in this context. Various transition metals such as Pd, Rh, Ru, Fe, Co, and Cu have been widely employed.² Recently, the direct C–H bond acylation of aromatic compounds containing various directing groups has been described. In 2009, Cheng firstly reported Pd-catalyzed oxidative sp² C–H acylation reactions of 2-arylpyridines from aldehydes.³ Subsequently, other groups (such as Li, Ge, and Wang) also developed many 2-arylpyridine-directed sp² C-H acylation by different carbonyl sources.⁴ In addition, Yu and Kim described separately the Pd-catalyzed direct C-H bond acylation using O-methyl oximes as a directing group.⁵ Anilide was also employed as a directing group for direct C-H bond acylation with aldehydes.⁶ Rh-catalyzed benzamide-directed oxidative acylation and Pdcatalyzed *ortho*-acylation of *N*-benzyltriflamides with aldehydes via sp^2 C–H bonds activation were described by Kim.⁷ Cyclic enamides participated intermolecular C-H bond acylation reactions was reported by Duan.⁸ Most recently, Wu and co-workers reported Pd-catalyzed ortho-acylation of 2-arylbenzoxazole in moderate to good yields using aldehydes as acyl source.^{9a} Patel also developed an efficient protocol for the orthoacylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles with aldehydes via Pd(II)catalyzed C-H activation/C-C bond formation.^{9b} Decarboxylative cross-coupling reaction of benzoic acids with α -oxocarboxylic acids was reported by Ge group.¹⁰

In most cases, aldehyde was employed as carbonyl source in transition-metal-catalyzed C–H bond acylation reaction. In addition, α -oxocarboxylic acids,^{4b,5b,8,11} benzylic alcohols,^{4c,12} α -diketones,^{4d} toluene derivatives,¹³ and carboxylic acids¹⁴ are also very useful carbonyl sources in the presence of transition-metal catalyst and oxidant.

As a privileged fragment, the benzothiazole core is a ubiquitous subunit in many natural products and pharmaceuticals with remarkable biological activities.¹⁵ For example, compounds **I** or their salts (Figure 1) containing a benzothiazole core are useful for treatment of parkinsonism, hypertension, depression, etc.¹⁶ Thus, it is highly desired to develop efficient and general synthetic methods for access to functionalized benzothiazoles in order to explore their potential applications. More recently, we has developed the Pd-catalyzed direct *ortho* sp^2 C–H arylation of 2-arylbenzothiazoles.¹⁷ Inspired by the above-mentioned direct acylation protocols and our interest in 2-arylbenzothiazoles, herein we would like to report the acylation reaction of 2-arylbenzothiazoles and benzylic alcohols using *tert*-butyl hydroperoxide (TBHP) as the oxidant in the presence of catalytic palladium acetate *via* oxidative CDC reaction.

Figure 1 Compounds I

Results and discussions

We initially used 2-(*o*-tolyl)benzo[*d*]thiazole **1a** and phenylmethanol **2a** as model substrates to optimize the reaction conditions, and selected results are summarized in Table 1. To our delight, the combination of $Pd(OAc)_2$ and TBHP (65 wt.% aqueous solution) in PhCl solvent at 110 °C can catalyze the CDC reaction and provide the acylated product **3a** in 31% yield (Table 1, entry 1). A screening of catalysts demonstrated that other Pd catalysts, such as $PdCl_2$, $Pd_2(dba)_3$, $Pd(CH_3CN)_2Cl_2$, $Pd(PhCN)_2Cl_2$, and $Pd(PPh_3)_2Cl_2$ were inferior to $Pd(OAc)_2$ (Table 1, entries 1-6). Then,

the use of other oxidants, such as *ditert*-butyl peroxide (DTBP), O_2 , oxone, and $K_2S_2O_8$, was also ineffective in this transformation (Table 1, entries 7-10). Further optimization showed the coupling yield could be raised to 61% in the presence of 7.0 equiv of TBHP (Table 1, entries 11-13). Subsequently, the effects of several ligands were investigated, and the results showed that the presence of ligand affected the reaction to some extent. Among them, benzoquinone (BQ) increased the yield to 68%, some other generally used ligands, such as TMEDA, DMEDA, PPh₃, L-proline, DDQ, and 1,10-phen showed ineffective (Table 1, entries 14-20). The effect of solvents on this reaction was also examined. PhCl was found to be the best choice, and other solvents such as toluene, AcOH, DMAc, DMF, DMSO, NMP, and CH₃CN failed to yield better results (Table 1, entries 21-27).

+ PhCH ₂ OH		[Pd] (5 mol%) Ligand, Oxidant Solvent, 110 °C				
1a	2a			3a Ph		
Entry	[Pd]	Solvent	Oxidant	Ligand	Yield	
					$(\%)^{b}$	
1	$Pd(OAc)_2$	PhCl	TBHP	-	31	
2	PdCl ₂	PhCl	TBHP	-	15	
3	$Pd_2(dba)_3$	PhCl	TBHP	-	27	
4	PdCl ₂ (CH ₃ CN) ₂	PhCl	TBHP	-	24	
5	PdCl ₂ (PhCN) ₂	PhCl	TBHP	-	13	
6	PdCl ₂ (PPh ₃) ₂	PhCl	TBHP	-	11	
7	$Pd(OAc)_2$	PhCl	DTBP	-	18	
8	$Pd(OAc)_2$	PhCl	O_2	-	-	
9	$Pd(OAc)_2$	PhCl	Oxone	-	-	
10	$Pd(OAc)_2$	PhCl	$K_2S_2O_8$	-	-	
11 ^c	$Pd(OAc)_2$	PhCl	TBHP	-	45	
12 ^d	$Pd(OAc)_2$	PhCl	TBHP	-	52	
13 ^e	$Pd(OAc)_2$	PhCl	TBHP	-	61	
$14^{\rm e}$	$Pd(OAc)_2$	PhCl	TBHP	TMEDA	37	
$15^{\rm e}$	$Pd(OAc)_2$	PhCl	TBHP	DMEDA	32	
16 ^e	$Pd(OAc)_2$	PhCl	TBHP	PPh ₃	28	
$17^{\rm e}$	$Pd(OAc)_2$	PhCl	TBHP	L-proline	42	
$18^{\rm e}$	$Pd(OAc)_2$	PhCl	TBHP	BQ	68	
19 ^e	$Pd(OAc)_2$	PhCl	TBHP	DDQ	trace	
$20^{\rm e}$	$Pd(OAc)_2$	PhCl	TBHP	1,10-phen	-	
21 ^e	$Pd(OAc)_2$	toluene	TBHP	BQ	50	

Table 1.	Optimization	of the	reaction	conditions ^a
----------	--------------	--------	----------	-------------------------

0					
27 ^e	$Pd(OAc)_2$	CH ₃ CN	TBHP	BQ	35
$26^{\rm e}$	$Pd(OAc)_2$	NMP	TBHP	BQ	20
25 ^e	$Pd(OAc)_2$	DMSO	TBHP	BQ	trace
24 ^e	$Pd(OAc)_2$	DMF	TBHP	BQ	-
23 ^e	$Pd(OAc)_2$	DMAc	TBHP	BQ	trace
22 ^e	$Pd(OAc)_2$	AcOH	TBHP	BQ	30

^a Conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), [Pd] catalyst (5 mol %), oxidant (3.0 equiv), ligand (10 mol%) 110 °C, 2 h; ^b Isolated yield based on **1a**; ^c 4.0 equiv of TBHP were used; ^d 6.0 equiv of TBHP were used; ^e 7.0 equiv of TBHP were used.

Under the optimized reaction conditions [Pd(OAc)₂ (5 mol%), TBHP (7.0 equiv), BQ (10 mol%), PhCl, 110 °C], the scope of the sp² C-H acylation reactions between the 2arylbenzo[d]thiazoles 1 with phenylmethanol 2a was investigated. The coupling of 2arylbenzo[d]thiazoles **1b-1i** with middle electron-withdrawing groups (Cl, F) at the ortho-position of 2-phenyl ring underwent smoothly the CDC acylation reaction to afford the corresponding products **3b-3i** in good to excellent yields (Table 2, entries 2-9). For instance, 2-(2-chlorophenyl)benzo[d]thiazole **1b** reacted with phenylmethanol **2a** leading to the formation of acylation product **3b** in 95% yield (Table 2, entry 2). The reaction of 2-(2-fluorophenyl)benzo[d]thiazole 1f under the standard conditions gave 3f in 82% yield (Table 2, entry 6). Generally, the benzothiazole parts with electron-neutral substituents or electron-withdrawing groups were relatively more reactive than those with electrondonating ones, and afforded relatively higher yields (Table 2, entries 2, 4-6, 8 and 9 vs entries 3 and 7). Regrettably, 2-(2-nitrophenyl)benzo[d]thiazole 1j containing strongly electron-withdrawing group (NO₂) reacted with phenylmethanol 2a under the present reaction conditions no desired products was obtained. If the substituents at the benzothiazole parts and the ortho-position of 2-phenyl ring parts both were electrondonating groups, gave the acylation product in poor yield. For example, when 6-methyl-

2-(o-tolyl) benzo [d] thiazole 1k was used as substrate, only a 22% yield was obtained (Table 2, entry 11). At the same time, substituted benzo[d] thiazole with a strong electrondonating methoxy group at the *ortho* position of the benzene ring showed poor reactivity. To those 2-arylbenzo[d]thiazoles **1n-1r** with electron-donating or -withdrawing group at the *meta*-position of 2-phenyl ring provided *ortho*-acylation products **3m-3q** exclusively at the less sterically hindered position in good yields (Table 2, entries 14-18). Fortunately, unsubstituted 2-phenylbenzo[*d*]thiazole also **1s**, reacted with phenylmethanol 2a smoothly under standard reaction conditions and moderate isolated yield (62%) of the monoacylated product **3r** was obtained, and only trace amount of bisacylated product was observed by TLC (Table 2, entry 19). On the other hand, paraposition substituted 2-arylbenzo [d] thiazole 1t afforded in moderate yield (67%) and an inferior selectivity with mono- and bis-acylated products in almost the same amount (Table 2, entry 20).

Table 2. Reaction of phenylmethanol with 2-arylbenzo[d]thiazoles^a

^a Conditions: 2-arylbenzo[*d*]thiazole **1** (0.2 mmol), phenylmethanol **2a** (0.6 mmol), Pd(OAc)₂ (5 mol%), TBHP (7.0 equiv), BQ (10 mol%), PhCl, 110 °C, 2h; ^b Isolated yield based on **1**; ^c With 35% yield of bis-acylated product.

The substituent effects of various primary alcohols on this reaction were then studied under the optimized reaction conditions (Table 3). It was noticed that benzylic alcohols bearing electron-donating groups (CH₃) (entry 2) and electron-withdrawing substituents (NO₂, Cl) at the aromatic ring (entries 3 and 4) provided good to high yields. However, the reaction yield decreased dramatically when 4-bromobenzyl alcohol **2e** was used as the substrate, and the desired product **3w** was achieved in 35% yield. Unfortunately, to aliphatic alcohol such as ^{*n*}BuOH **2f** the reaction could not occur under the recommended reaction conditions.

Table 3. Acylation of 2-arylbenzo[*d*]thiazole with primary alcohols^a

^a Conditions: 2-arylbenzo[*d*]thiazole **1i** (0.2 mmol), primary alcohols **2** (0.6 mmol), Pd(OAc)₂ (5 mol%), TBHP (7.0 equiv), BQ (10 mol%), PhCl, 110 °C, 2h; ^b Isolated yield based on **1i**.

To understand the reaction mechanism, we test some other experiments. First, using PhCHO as the alternative of PhCH₂OH, the desired coupling product **3a** was obtained in 70% yield under the standard conditions. Subsequently, 2.0 equiv. TEMPO as a radical-trapping reagent was used in our model reaction, and only trace of desired product **3a** was observed, suggesting that free radical intermediate was involved in the reaction.

Based on the previous research^{5a,6-9,12,13} and our results¹⁷, a plausible reaction pathway of the palladium-catalyzed *ortho*-acylation of 2-arylbenzo[*d*]thiazole with phenylmethanol through direct C–H bond activation was suggested in Scheme 1. First, sp² C–H bond activation of 2-arylbenzo[*d*]thiazole occurs in the presence of the palladium catalyst to

form a five-membered palladacycle intermediate **A** (was observed by NMR). Second, the palladacycle **A** reacted with the acyl radical which was produced in situ from the oxidation of alcohol by TBHP to form either reactive Pd^{III} or Pd^{IV} intermediate **B**.^{5a,6,12,13} Finally, the reductive elimination of intermediate **B** afforded coupling product **3** and regenerates Pd^{II} for the next catalytic cycle.

Scheme 1 Plausible mechanism for the Pd-catalyzed ortho-acylation reaction.

In summary, we have developed an efficient method for the synthesis of aromatic ketones via a Pd-catalyzed direct sp² C–H bond acylation of 2-arylbenzo[*d*]thiazoles. The cheap and readily available benzylic alcohols were used as acylation sources in the presence of TBHP. The reaction exhibited good functional group tolerance with good to excellent yield and high selectivity.

Experimental Section

General experimental procedures and characterizations: 2-Arylbenzo[*d*]thiazole (0.2 mmol), benzylic alcohol (0.6 mmol), Pd(OAc)₂ (0.01 mmol), TBHP (1.4 mmol, 196 μ L, 65% aq), BQ (0.02 mmol), and PhCl (2.0 mL) were added in a 25 mL sealed tube with a

Teflon-lined cap. The mixture was heated at 110 °C for 2 h. After being cooled to room temperature, the volatiles were removed under reduced pressure, and the residue was purified by a flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to give the corresponding pure coupling product **3**.

(2-(benzo[d]thiazol-2-yl)-3-methylphenyl)(phenyl)methanone **3a**. Isolated as a yellow solid (68% yield, 44.7 mg), mp: 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.27 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.37-7.42 (m, 3H), 7.46-7.48 (m, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 121.3, 123.4, 125.2, 126.0, 126.6, 128.0, 129.3, 129.9, 132.5, 132.7, 132.8, 136.2, 137.4, 138.2, 140.7, 152.9, 165.2, 197.3; IR (KBr) v/cm⁻¹: 1735, 1458, 1087, 775; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₆NOS: 330.0950.

(2-(benzo[d]thiazol-2-yl)-3-chlorophenyl)(phenyl)methanone**3b** $. Isolated as a yellow solid (95% yield, 66.3 mg), mp: 178-179 °C; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.26 (t, J = 7.6 Hz, 2H), 7.31-7.41 (m, 3H), 7.49-7.56 (m, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 121.3, 123.6, 125.6, 126.1, 127.5, 128.1, 129.4, 130.6, 131.8, 132.0, 132.9, 134.2, 136.3, 137.0, 142.9, 152.2, 162.1, 195.8; IR (KBr) v/cm⁻¹: 1669, 1317, 758; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₃ClNOS: 350.0406, found: 350.0400.

(3-chloro-2-(6-methylbenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3c**. Isolated as a yellow solid (85% yield, 61.7 mg), mp: 134-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.19 (d, J = 8.4 Hz, 1H), 7.25 (t, J = 7.2 Hz, 2H), 7.36 (t, J = 7.2 Hz, 1H), 7.47-7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.52 (m, 2H), 7.57 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.5

8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 120.9, 123.0, 127.4, 127.7, 128.1, 129.4, 130.5, 131.8, 131.9, 132.8, 134.1, 135.8, 136.5, 137.0, 142.9, 150.4, 160.9, 195.8; IR (KBr) v/cm⁻¹: 1670, 1276, 707; HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₂₁H₁₅ClNOS: 364.0563, found: 364.0568.

(3-chloro-2-(6-chlorobenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3d**. Isolated as a yellow solid (92% yield, 70.5 mg), mp:147-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 8.8 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.76 (t, J = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 120.9, 124.3, 127.0, 127.6, 128.2, 129.4, 130.9, 131.3, 131.6, 132.1, 133.0, 134.1, 136.9, 137.5, 142.9, 150.7, 162.7, 195.6; IR (KBr) v/cm⁻¹: 1672, 1303, 826; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₂Cl₂NOS: 384.0017, found: 384.0021.

(3-chloro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3e**. Isolated as a yellow solid (83% yield, 60.9 mg), mp: 152-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 8.8 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.46-7.51 (m, 2H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.81 (dd, *J* = 4.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 107.4 (d, ²*J*_{C-F} = 27.0 Hz), 114.9 (d, ²*J*_{C-F} = 25.0 Hz), 124.6 (d, ³*J*_{C-F} = 10.0 Hz), 127.6, 128.2, 129.4, 130.8, 131.4, 132.0, 132.9, 134.1, 136.9, 137.3 (d, ³*J*_{C-F} = 11.0 Hz), 142.9, 148.8, 160.6 (d, ¹*J*_{C-F} = 245.0 Hz), 195.7; IR (KBr) v/cm⁻¹: 1667, 1321, 750; HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₂₀H₁₂ClFNOS: 368.0312, found: 368.0310.

(2-(benzo[d]thiazol-2-yl)-3-fluorophenyl)(phenyl)methanone **3f**. Isolated as a yellow solid (82% yield, 54.6 mg), mp: 108-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.40

(m, 8H), 7.53-7.59 (m, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.87 (dd, J = 4.0, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 117.6 (d, ² $J_{C-F} = 23.0$ Hz), 120.4 (d, ³ $J_{C-F} = 13.0$ Hz), 121.3, 123.4, 124.7, 125.5, 126.1, 128.2, 129.0, 131.7 (d, ³ $J_{C-F} = 9.0$ Hz), 132.6, 135.8, 137.6, 142.4, 152.0, 158.3, 160.1 (d, ¹ $J_{C-F} = 252.0$ Hz), 196.0; IR (KBr) v/cm⁻¹: 1668, 1299, 1273, 757; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₃FNOS: 334.0702, found: 334.0700.

(3-fluoro-2-(6-methylbenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3g**. Isolated as a yellow solid (75% yield, 52.0 mg), mp:131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 7.15 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 6.8 Hz, 2H), 7.37 (t, J = 9.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.57 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 117.6 (d, ² $J_{C-F} = 22.0$ Hz), 120.5 (d, ² $J_{C-F} = 14.0$ Hz), 120.9, 122.9, 124.7, 127.8, 128.2, 128.9, 131.5 (d, ³ $J_{C-F} = 9.0$ Hz), 132.6, 135.8, 136.0, 137.6, 142.3, 150.2, 157.1, 160.0 (d, ¹ $J_{C-F} = 253.0$ Hz), 196.1; IR (KBr) v/cm⁻¹: 1671, 1299, 745; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅FNOS: 348.0858, found: 348.0859.

(2-(6-chlorobenzo[d]thiazol-2-yl)-3-fluorophenyl)(phenyl)methanone **3h**. Isolated as a yellow solid (80% yield, 58.7 mg), mp: 170-171 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.42 (m, 6H), 7.57-7.62 (m, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 7.6 Hz, 2H), 7.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 117.7 (d, ² $J_{C-F} = 22.0$ Hz), 120.0 (d, ² $J_{C-F} = 13.0$ Hz), 120.8, 124.1, 124.8, 127.0, 128.3, 128.9, 131.5, 132.0 (d, ³ $J_{C-F} = 9.0$ Hz), 132.7, 136.9 (d, ³ $J_{C-F} = 6.0$ Hz), 137.5, 142.3, 150.5, 158.8, 160.1 (d, ¹ $J_{C-F} = 253.0$ Hz), 195.8; IR (KBr) v/cm⁻¹: 1671, 1309, 722; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₂ClFNOS: 368.0312, found: 368.0315.

(3-fluoro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3i**. Isolated as a colorless solid (92% yield, 64.6 mg), mp:124-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (t, J = 8.8 Hz, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.34-7.41 (m, 3H), 7.47 (d, J = 8.0 Hz, 1H), 7.56-7.61 (m, 1H), 7.67-7.73 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 107.3 (d, ² $J_{C-F} = 27.0$ Hz), 114.9 (d, ² $J_{C-F} = 25.0$ Hz), 117.6 (d, ² $J_{C-F} = 22.0$ Hz), 120.1 (d, ³ $J_{C-F} = 13.0$ Hz), 124.4 (d, ³ $J_{C-F} = 9.0$ Hz), 124.8, 128.3, 128.9, 131.8 (d, ³ $J_{C-F} = 9.0$ Hz), 132.7, 136.9, 137.5, 142.3, 148.6, 158.1, 160.0 (d, ¹ $J_{C-F} = 252.0$ Hz), 160.6 (d, ¹ $J_{C-F} = 245.0$ Hz), 195.9; IR (KBr) v/cm⁻¹: 1665, 1279, 7788; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₂F₂NOS: 352.0608, found: 352.0612.

(3-methyl-2-(6-methylbenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone **3j**. Isolated as a brown solid (22% yield, 15.1 mg), mp: 70-71 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 2.45 (s, 3H), 7.22 (d, J = 8.4 Hz, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.38-7.44 (m, 2H), 7.46-7.49 (m, 2H), 7.57 (s, 1H), 7.69 (d, J = 7.2 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 21.5, 121.0, 122.8, 126.5, 127.6, 128.0, 129.2, 129.9, 132.6, 132.7, 132.8, 135.3, 136.4, 137.4, 138.2, 140.7, 151.1, 164.0, 197.4; IR (KBr) v/cm⁻¹: 1668, 1275, 774; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₁₈NOS: 344.1109, found: 344.1111.

(2-(6-chlorobenzo[d]thiazol-2-yl)-3-methylphenyl)(phenyl)methanone 3k. Isolated as a White solid (70% yield, 50.8 mg); mp:122-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.30 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 8.8 Hz,1H), 7.39-7.44 (m, 2H), 7.49 (d, J = 3.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.76 (s, 1H), 7.83 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 120.9, 124.1, 126.8, 126.9, 128.1, 129.5, 129.9, 131.2, 132.1, 132.8, 132.9, 137.3, 137.4, 138.2, 140.6, 151.4, 165.8, 197.2; IR (KBr) v/cm⁻¹: 1668,

1279, 719; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅ClNOS: 364.0563, found: 364.0568.

(2-(6-fluorobenzo[d]thiazol-2-yl)-3-methylphenyl)(phenyl)methanone **3l**. Isolated as a yellow solid (83% yield, 57.6 mg), mp:132-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.14 (t, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.38-7.48 (m, 5H), 6.68 (d, J = 7.6 Hz, 2H), 7.85 (dd, J = 4.8, 8.4 Hz,1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 107.5 (d, ² $J_{C-F} = 26.0$ Hz), 114.7 (d, ² $J_{C-F} = 25.0$ Hz), 124.3 (d, ³ $J_{C-F} = 10.0$ Hz), 126.7, 128.1, 129.4, 129.9, 132.2, 132.8, 132.9, 137.2 (d, ³ $J_{C-F} = 11.0$ Hz), 137.4, 138.2, 140.6, 149.5, 160.4 (d, ¹ $J_{C-F} = 245.0$ Hz), 165.0, 197.2; IR (KBr) v/cm⁻¹: 1668, 1282, 849; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅FNOS: 348.0858, found: 348.0862.

(2-(benzo[d]thiazol-2-yl)-4-methylphenyl)(phenyl)methanone**3m** $. Isolated as a white solid (65% yield, 42.8 mg), mp: 129-130 °C; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 2.52 (s, 3H), 7.25-7.30 (m, 3H), 7.32-7.39 (m, 2H), 7.41 (s, 7.41), 7.45 (d, J = 7.6 Hz, 1H), 7.73-7.81 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 121.4, 123.4, 125.2, 126.1, 128.2, 129.1, 129.3, 130.3, 131.0, 132.3, 132.6, 135.4, 137.0, 138.0, 140.6, 153.5, 165.6, 197.7; IR (KBr) v/cm⁻¹: 1663, 1281, 732; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₆NOS: 330.0953, found: 330.0949.

(2-(6-chlorobenzo[d]thiazol-2-yl)-4-methylphenyl)(phenyl)methanone **3n**. Isolated as a yellow solid (65% yield, 47.2 mg), mp:125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.52 (s, 3H), 7.25-7.32 (m, 3H), 7.35-7.46 (m, 3H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.69 (s, 1H), 7.71-7.76 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 121.0, 124.1, 127.0, 128.2, 129.2, 130.2, 131.1, 131.2 131.9, 132.7, 136.5, 137.0, 137.9, 140.8, 152.0, 166.1, 197.5;

IR (KBr) v/cm⁻¹: 1683, 1292, 814; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅ClNOS: 364.0563, found: 364.0567.

(2-(6-fluorobenzo[d]thiazol-2-yl)-4-methylphenyl)(phenyl)methanone **3o**. Isolated as a yellow solid (81% yield, 56.2 mg), mp:138-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.51 (s, 3H), 7.08 (t, J = 8.8 Hz, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.35-7.46 (m, 4H), 7.68 (s, 1H), 7.70-7.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 107.6 (d, ² $J_{C-F} = 27.0$ Hz), 114.8 (d, ² $J_{C-F} = 24.0$ Hz), 124.3 (d, ³ $J_{C-F} = 10.0$ Hz), 128.2, 129.2, 129.3, 130.2, 131.0, 132.0, 132.6, 136.3 (d, ³ $J_{C-F} = 12.0$ Hz), 136.9, 137.9, 140.7, 150.1, 160.5 (d, ¹ $J_{C-F} = 244.0$ Hz), 165.4, 197.6; IR (KBr) v/cm⁻¹: 1663, 1280, 929, 733; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅FNOS: 348.0858, found: 348.0861.

(2-(*benzo*[*d*]*thiazo*1-2-*y*1)-4-*chlorophenyl*)(*phenyl*)*methanone* **3***p*. Isolated as a white solid (72% yield, 50.2 mg), mp:134-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.34 (m, 3H), 7.35-7.41 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.79 (t, *J* = 6.8 Hz, 2H), 7.93 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 121.5, 123.6, 125.7, 126.4, 128.3, 129.2, 129.5, 130.2, 130.3, 132.9, 133.9, 135.4, 136.2, 137.5, 138.0, 153.3, 163.7, 196.5; IR (KBr) v/cm⁻¹: 1665, 1277, 778; HRMS (ESI): *m*/*z* [M + H]⁺ calcd for C₂₀H₁₃ClNOS: 350.0406, found: 350.0411.

(4-chloro-2-(6-methylbenzo[d]thiazol-2-yl)phenyl)(phenyl)methanone 3q. Isolated as a yellow solid (67% yield, 48.6 mg), mp: 87-88 °C ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 7.17 (d, J = 8.4 Hz, 1H), 7.28 (t, J = 7.2 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.56 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 121.2, 123.1, 128.0, 128.3, 129.2, 129.3, 130.1, 130.3, 132.9, 134.0, 135.6, 136.0, 136.2, 137.5, 137.9, 151.5,

162.5, 196.6; IR (KBr) v/cm⁻¹: 1666, 1273, 738; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₅ClNOS: 364.0563, found: 364.0559.

 $((2-(benzo[d]thiazol-2-yl)phenyl)(phenyl)methanone 3r^{9b}$. Isolated as a yellow solid (62% yield, 40.8 mg), mp: 109-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 3H), 7.34-7.38 (m, 2H), 7.54 (d, J = 6.8 Hz, 1H), 7.60-7.64 (m, 2H), 7.77 (t, J = 7.6 Hz, 4H), 7.93 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 121.4, 123.4, 125.3, 126.2, 128.2, 128.9, 129.3, 129.6, 130.2, 130.3, 132.1, 132.7, 135.3, 137.8, 139.7, 153.5, 165.3, 197.7; IR (KBr) v/cm⁻¹: 1666, 1256, 799; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₄NOS: 316.0796, found: 316.0791.

(2-(*benzo*[*d*]*thiazo*1-2-*y*1)-5-*methoxyphenyl*)(*phenyl*)*methanone* **3s** Isolated in 32% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 6.94 (s, 1H), 7.03 (d, *J* = 8.8 Hz, 1H), 7.16-7.30 (m, 5H), 7.65 (t, *J* = 6.4 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 113.9, 115.8, 121.2, 123.1, 124.6, 124.9, 125.9, 128.2, 129.2, 131.1, 132.6, 135.1, 137.7, 141.3, 153.5, 161.2, 165.0, 197.2; HRMS (ESI): *m/z* [M + H]⁺ calcd for C₂₁H₁₆NO₂S: 346.0902, found: 346.0897.

(2-(*benzo[d]thiazol-2-yl*)-5-*methoxy-1,3-phenylene*)*bis*(*phenylmethanone*) **3s'** Isolated in 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.93 (s, 3H), 7.15 (t, *J* = 7.2 Hz, 2H), 7.20-7.26 (m, 7H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.66-7.73 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 56.0, 115.7, 121.0, 123.1, 123.4, 125.0, 125.9, 128.2, 129.5, 133.1, 136.3, 136.7, 142.6, 152.5, 160.4, 162.7, 196.6; HRMS (ESI): *m/z* [M + H]⁺ calcd for C₂₈H₂₀NO₃S: 450.1164, found: 450.1173.

(3-fluoro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)(p-tolyl)methanone 3t. Isolated as a yellow solid (74% yield, 54.0 mg), mp: 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.29

(s, 3H), 7.07-7.11 (m, 3H), 7.31 (d, J = 7.2 Hz, 1H), 7.37 (t, J = 9.2 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.54-7.59 (m, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.70 (dd, J = 4.8, 8.8 Hz,1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 107.3 (d, ² $J_{C-F} = 26.0$ Hz), 114.9 (d, ² $J_{C-F} = 25.0$ Hz), 117.5 (d, ² $J_{C-F} = 22.0$ Hz), 120.0 (d, ³ $J_{C-F} = 14.0$ Hz), 124.5 (d, ³ $J_{C-F} = 10.0$ Hz), 124.6, 129.1, 129.3, 131.7 (d, ³ $J_{C-F} = 9.0$ Hz), 134.9, 136.9 (d, ³ $J_{C-F} = 11.0$ Hz), 142.5, 143.7, 148.7, 158.2, 160.1 (d, ¹ $J_{C-F} = 252.0$ Hz), 160.6 (d, ¹ $J_{C-F} = 244.0$ Hz), 195.7; IR (KBr) v/cm⁻¹: 1661, 1279, 788; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₄F₂NOS: 366.0764, found: 366.0771.

(4-chlorophenyl)(3-fluoro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)methanone **3u**. Isolated as a yellow solid (85% yield, 54.0 mg), mp: 107-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (dt, J = 2.4, 8.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 8.4 Hz, 1H), 7.49 (dd, J = 2.8, 8.0 Hz, 1H), 7.59 (dt, J = 5.2, 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.8 Hz, 1H) \Box ¹³C NMR (100 MHz, CDCl₃) δ 107.4 (d, ² $J_{C-F} = 27.0$ Hz), 115.2 (d, ² $J_{C-F} = 25.0$ Hz), 117.8 (d, ² $J_{C-F} = 22.0$ Hz), 119.9 (d, ³ $J_{C-F} = 14.0$ Hz), 124.3 (d, ³ $J_{C-F} = 9.0$ Hz), 124.6, 128.7, 130.2, 131.9 (d, ³ $J_{C-F} = 9.0$ Hz), 136.0, 136.7, 139.0, 141.7, 148.5, 157.9, 158.8 (d, ¹ $J_{C-F} = 252.0$ Hz), 159.4 (d, ¹ $J_{C-F} = 245.0$ Hz), 194.7; IR (KBr) v/cm⁻¹: 1670, 1275, 843; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₁ClF₂NOS: 386.0218, found: 386.0225.

(3-fluoro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)(4-nitrophenyl)methanone **3v**. Isolated as a yellow solid (87% yield, 68.9 mg), mp: 143-144 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dt, J = 1.6, 7.2 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.44-7.50 (m, 2H), 7.60-7.66 (m, 2H), 7.86 (d, J = 8.4 Hz, 2H), 8.12 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 107.6 (d, ² $J_{C-F} = 26.0$ Hz), 115.4 (d, ² $J_{C-F} = 25.0$ Hz), 118.4 (d, ² $J_{C-F} = 22.0$ Hz), 119.8 (d, ${}^{3}J_{C-F} = 13.0 \text{ Hz}$), 123.6, 124.1 (d, ${}^{3}J_{C-F} = 10.0 \text{ Hz}$), 124.8, 129.3, 132.3 (d, ${}^{3}J_{C-F} = 9.0 \text{ Hz}$), 136.7, 140.7, 142.6, 148.0, 149.7, 157.6, 158.8 (d, ${}^{1}J_{C-F} = 253.0 \text{ Hz}$), 159.5 (d, ${}^{1}J_{C-F} =$ 246.0 Hz), 194.0; IR (KBr) v/cm⁻¹: 1673, 1255, 797; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₁F₂N₂O₃S: 397.0458, found: 397.0465.

(4-bromophenyl)(3-fluoro-2-(6-fluorobenzo[d]thiazol-2-yl)phenyl)methanone **3**w. Isolated as a yellow solid (35% yield, 30.0 mg), mp: 124-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dt, J = 2.4, 8.8 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.38-7.41 (m, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.51 (dd, J = 2.4, 8.0 Hz, 1H), 7.57-7.63 (m, 3H), 7.68 (dd, J = 4.8, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 107.5 (d, ² $J_{C-F} = 27.0$ Hz), 115.2 (d, ² $J_{C-F} = 25.0$ Hz), 117.8 (d, ² $J_{C-F} = 22.0$ Hz), 119.9 (d, ³ $J_{C-F} = 14.0$ Hz), 124.3 (d, ³ $J_{C-F} = 10.0$ Hz), 124.6, 127.8, 130.3, 131.6, 131.9 (d, ³ $J_{C-F} = 9.0$ Hz), 136.4, 136.7, 141.6, 148.5, 157.8, 160.0 (d, ¹ $J_{C-F} = 254.0$ Hz), 161.7 (d, ¹ $J_{C-F} = 245.0$ Hz), 194.9; IR (KBr) v/cm⁻¹: 1671, 1275, 795; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₁BrF₂NOS: 429.9713, found: 429.9708.

Acknowledgements

Financial Supported from National Natural Science Foundation of China (21002042), Jiangxi Educational Committee (GJJ12169), and Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201217) is gratefully acknowledged.

References and notes

 For some recent reviews : (a) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788; (b) A. J. Hickman, M. S. Sanford, Nature 2012, 484, 177; (c) M. C.
 White, Science 2012, 335, 807; (d) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464; (e) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem., Int. Ed. 2011, 50, 11062; (f) J. Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740; (g) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293; (h) C. S. Yeung, V.
 M. Dong, Chem. Rev. 2011, 111, 1215; (i) H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780; (j) S. H. Cho, J. K. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068; (k) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; (l) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624.

2 For some recent examples, see: (a) H. Li, P. Li, L. Wang, Org. Lett. 2013, 15, 620; (b)
P. Xie, Y. Xie, B. Qian, H. Zhou, C. Xia, H. Huang, J. Am. Chem. Soc. 2012, 134, 9902;
(c) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim, S. Chang, J. Am. Chem. Soc.
2012, 134, 9110; (d) K. Gao, P. S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249; (e) B. X. Tang, R. J. Song, C. Y. Wu, Y. Liu, M. B. Zhou, W. T. Wei, G. B. Deng, D. L. Yin, J. H. Li, J. Am. Chem. Soc. 2010, 132, 8900; (f) X. Wang, L. Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3648; (g) L. Zhao, O. Baslé, C.-J. Li, Proc. Natl. Acad. Sci. (USA) 2009, 106, 4106.

3 X. Jia, S. Zhang, W. Wang, F. Luo, J. Cheng, Org. Lett. 2009, 11, 3120.

4 (a) O. Baslé, J. Bidange, Q. Shuai, C.-J. Li, *Adv. Synth. Catal.* 2010, 352, 1145; (b) M.
Li, H. Ge, *Org. Lett.* 2010, *12*, 3464; (c) F. Xiao, Q. Shuai, F. Zhao, O. Baslé, G. Deng,
C.-J. Li, *Org. Lett.* 2011, *13*, 1614; (d) W. Zhou, H. Li, L. Wang, *Org. Lett.* 2012, *14*, 4594.

- 5 (a) C.-W. Chan, Z. Zhou, A. S. C. Chan, W.-Y. Yu, Org. Lett. 2010, 12, 3926; (a) M.
- Kim, J. Park. S. Sharma, A. Kim, E. Park, J. H. Kwak, Y. H. Jung, I. S. Kim, *Chem. Commun.* **2013**, *49*, 925.
- 6 (a) C.-W. Chan, Z. Zhou, W.-Y. Yu, Adv. Synth. Catal. 2011, 353, 2999; (b) Y. Wu, B.
- Li, F. Mao, X. Li, F. Y. Kwong, Org. Lett. 2011, 13, 3258; (c) C. Li, L. Wang, P. Li, W. Zhou, Chem. Eur. J. 2011, 17, 10208.
- 7 (a) J. Park, E. Park, A. Kim, Y. Lee, K.-W. Chi, J. Kwak, Y. Jung, I. Kim, Org. Lett.
- 2011, 13, 4390; (b) S. Sharma, J. Park, E. Park, A. Kim, M. Kim, J. H. Kwak, Y. H. Jung,
- I. S. Kim, Adv. Synth. Catal. 2013, 355, 332.
- 8 H. Wang, L.-N. Guo, X.-H Duan, Org. Lett. 2012, 14, 4358.
- 9 (a) Q. Zhang, C. Li, F. Yang, J. Li, Y. Wu, Tetrahedron 2013, 69, 320; (b) A. Banerjee,
- S. K. Santra, S. Guin, S. K. Rout, B. K. Patel, Eur. J. Org. Chem. 2013, 7, 1367.
- 10 J. Miao, H. Ge, Org. Lett. 2013, 10.1021/ol400919u.
- 11 P. Fang, M. Li, H. Ge, J. Am. Chem. Soc. 2010, 132, 11898.
- 12 Y. Yuan, D. T. Chen, X. W. Wang, Adv. Synth. Catal. 2011, 353, 3373.
- 13 Z. Yin, P. Sun, J. Org. Chem. 2012, 77, 11339.
- 14 J. Lu, H. Zhang, X. Chen, H. Liu, Y. Jiang, H. Fu, Adv. Synth. Catal. 2013, 355, 529.
- 15 (a) K. Wang, F. P. Guengerich, Chem. Res. Toxicol. 2012, 25, 1740; (b) B. S. Tan, K.
- H. Tiong, A. Muruhadas, N. Randhawa, H. L. hoo, T. D. Bradshaw, M. F. Stevens, C. O.
- Leong, Mol. Cancer Ther. 2011, 10, 1982; (c) S. Aiello, G. Wells, E. L. Stone, H. Kadri,
- R. Bazzi, D. R. Bell, M. F. Stevens, C. S. Matthews, T. D. Bradshaw, A. D. Westwell, J.
- Med. Chem. 2008, 51, 5135; (d) A. S. Kalgutkar, I. Gardner, R. S. Obach, C. L. Shaffer,
- E. Callegari, K. R. Henne, A. E. Mutlib, D. K. Dalvie, J. S. Lee, Y. Nakai, J. P.

O'Donnell, J. Boer, S. P. Harriman, Curr. Drug Metab. 2005, 6, 161; (e) I. Hutchinson,

M. S. Chua, H. L. Browne, V. Trapani, T. D. Bradshaw, A. D. Westwell, M. F. Stevens, J. Med. Chem. 2001, 44, 1446.

16 I. Takehiro, K. Satoko, S. Hiroaki, Jpn. Kokai Tokkyo Koho (2011), JP 2011021010, Feb 3, 2011.

17 Q. Ding, H. Ji, D. Wang, Y. Lin, W. Yu, Y. Peng, J. Organomet. Chem. 2012, 711,62.

Graphical abstract:

Pd(OAc)₂ (5 mol%) TBPH (7.0 equiv) R ArCH₂OH R² BQ (10 mol%) PhCI, 110 °C, 2 h 23 examples, up to 95% yield

Tabla	1 Ontimization	n of the re	action as	nditiona	
rapie		i oi the re	action co	manuons	
	\ \			, •	
∕~_N		[Pd] (5 mol%)) nt	ч)—	
	\rightarrow + PhCH ₂ OH		<u>"</u> → []	\rightarrow	
∽∕~S		Solvent, 110 °	<i>с</i> ~~{		
1a	2a			3a Ph	
Entry	[Pd]	Solvent	Oxidant	Ligand	Yield
Linuy	[- ~]	Sorront	Smaunt		1 1010
					$(\%)^{b}$
1	$Pd(O\Delta c)_{c}$	PhCl	ТВНР		$\frac{(\%)^{b}}{31}$
1	$Pd(OAc)_2$	PhCl PhCl	TBHP		$\frac{(\%)^{b}}{31}$
1 2 2	$Pd(OAc)_2$ $PdCl_2$ $Pd(dh_2)$	PhCl PhCl	TBHP TBHP TBHP		$(\%)^{b}$ 31 15 27
1 2 3	Pd(OAc) ₂ PdCl ₂ Pd ₂ (dba) ₃	PhCl PhCl PhCl PhCl	TBHP TBHP TBHP		(%) ^b 31 15 27 24
1 2 3 4	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ \end{array}$	PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP		(%) ^b 31 15 27 24
1 2 3 4 5	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2 \end{array}$	PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP		(%) ^b 31 15 27 24 13
1 2 3 4 5 6	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2 \end{array}$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP		(%) ^b 31 15 27 24 13 11
1 2 3 4 5 6 7	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2\\ Pd(OAc)_2\\ \end{array}$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP		(%) ^b 31 15 27 24 13 11 18
1 2 3 4 5 6 7 8	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\ \end{array}$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂		(%) ^b 31 15 27 24 13 11 18 -
1 2 3 4 5 6 7 8 9	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhA)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\ \end{array}$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	$\begin{array}{c} TBHP\\ TBHP\\ TBHP\\ TBHP\\ TBHP\\ TBHP\\ DTBP\\ O_2\\ Oxone \end{array}$		(%) ^b 31 15 27 24 13 11 18 -
1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈		(%) ^b 31 15 27 24 13 11 18 - -
1 2 3 4 5 6 7 8 9 10 11 ^c	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2\\ Pd(OAc)_2\\ Pd(O$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP DTBP O_2 Oxone $K_2S_2O_8$ TBHP		(%) ^b 31 15 27 24 13 11 18 - - 45
1 2 3 4 5 6 7 8 9 10 11 ^c 12 ^d	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2\\ Pd(OAc)_2\\ Pd(O$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP DTBP O_2 Oxone $K_2S_2O_8$ TBHP TBHP		(%) ^b 31 15 27 24 13 11 18 - - 45 52
1 2 3 4 5 6 7 8 9 10 11 ^c 12 ^d 13 ^e	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PPh_3)_2\\ Pd(OAc)_2\\ Pd(O$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP DTBP O_2 Oxone $K_2S_2O_8$ TBHP TBHP TBHP		$(\%)^{b}$ 31 15 27 24 13 11 18 - - 45 52 61
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11^{c} \\ 12^{d} \\ 13^{e} \\ 14^{e} \end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhA_3)_2\\ Pd(OAc)_2\\ Pd(OAc)_2$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP	- - - - - - - - - - - - -	$(\%)^{b}$ 31 15 27 24 13 11 18 - - 45 52 61 37
1 2 3 4 5 6 7 8 9 10 11 ^c 12 ^d 13 ^e 14 ^e 15 ^e	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhA)_2\\ Pd(OAc)_2\\ $	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	$(\%)^{b}$ 31 15 27 24 13 11 18 - - 45 52 61 37 32
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11^{c} \\ 12^{d} \\ 13^{e} \\ 14^{e} \\ 15^{e} \\ 16^{e} \\$	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhA_3)_2\\ Pd(OAc)_2\\ Pd(OAc)_2$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11^{c}\\ 12^{d}\\ 13^{e}\\ 14^{e}\\ 15^{e}\\ 16^{e}\\ 17^{e}\\ 17^{e}\\ \end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 12
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11^{c}\\ 12^{d}\\ 13^{e}\\ 14^{e}\\ 15^{e}\\ 16^{e}\\ 17^{e}\\ 10^{e}\\ 17^{e}\\ 10^{e}\\ 17^{e}\\ 10^{e}\\ 17^{e}\\ 10^{e}\\ 10^{e}\\$	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - TMEDA DMEDA PPh ₃ L-proline	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 52
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11^{c}\\ 12^{d}\\ 13^{e}\\ 14^{e}\\ 15^{e}\\ 16^{e}\\ 17^{e}\\ 18^{e}\\ 18^{e}\\$	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - TMEDA DMEDA PPh ₃ L-proline BQ	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11^{c}\\ 12^{d}\\ 13^{e}\\ 14^{e}\\ 15^{e}\\ 16^{e}\\ 17^{e}\\ 18^{e}\\ 19^{e}\\ \end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - TMEDA DMEDA PPh ₃ L-proline BQ DDQ	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - TMEDA DMEDA PPh ₃ L-proline BQ DDQ 1,10-phen	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\\21^{e}\\\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace - 50
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\\21^{e}\\22^{e}\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace - 50 30
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\\21^{e}\\22^{e}\\23^{e}\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace - 50 30 trace
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\\21^{e}\\22^{e}\\23^{e}\\24^{e}\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace - 50 30 trace
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11^{c}\\12^{d}\\13^{e}\\14^{e}\\15^{e}\\16^{e}\\17^{e}\\18^{e}\\19^{e}\\20^{e}\\21^{e}\\22^{e}\\23^{e}\\24^{e}\\25^{e}\end{array} $	$\begin{array}{c} Pd(OAc)_2\\ PdCl_2\\ Pd_2(dba)_3\\ PdCl_2(CH_3CN)_2\\ PdCl_2(PhCN)_2\\ PdCl_2(PhCN)_2\\ Pd(OAc)_2\\ Pd(OAc)_2\\$	PhCl PhCl PhCl PhCl PhCl PhCl PhCl PhCl	TBHP TBHP TBHP TBHP TBHP TBHP DTBP O ₂ Oxone K ₂ S ₂ O ₈ TBHP TBHP TBHP TBHP TBHP TBHP TBHP TBHP	- - - - - - - - - - - - - - - - - - -	(%) ^b 31 15 27 24 13 11 18 - - 45 52 61 37 32 28 42 68 trace - 50 30 trace

^a Conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), [Pd] catalyst (5 mol %), oxidant (3.0 equiv),

ligand (10 mol%) 110 °C, 2 h.

^b Isolated yield based on **1a**.

^c 4.0 equiv of TBHP were used.

^d 6.0 equiv of TBHP were used.

^e 7.0 equiv of TBHP were used.

R ¹	S R ² + PhCH ₂	Pd(OAc) ₂ (5 mol%) <u>TBPH (7.0 equiv)</u> BQ (10 mol%) PhCl, 110 °C, 2 h		R^2	5		
Entres	1 2a	Due de et 2	3 V:-1-1	Pn Enters		Due due et 2	V: 14
Entry	1	Product 3	$(\%)^{b}$	Entry	1	Product 3	$(\%)^{b}$
1			68	11			22
	1a	O≕(Ph			1k	o≕ Ph 3j	
		3 a					
2			95	12			70
	10	Ph			11	Ph 3k	
3			85	13	F S S		83
	1c	O≓(Ph			1m	Ph 31	
4		3c	92	14	ſŢŢĸ 1n		65
	Iu Iu	^{Ph}				- 311	
5			83	15	$a \sim s \sim s$		65
	10	Ph 3e			10	3n	
6			82	16			81
	11	Ph			тр	Ph 30	
		31					

Table 2. Reaction of phenylmethanol with 2-arylbenzo[*d*]thiazoles^a

^a Conditions: 2-arylbenzo[*d*]thiazole **1** (0.2 mmol), phenylmethanol **2a** (0.6 mmol), $Pd(OAc)_2$ (5 mol%), TBHP (7.0 equiv), BQ (10 mol%), PhCl, 110 °C, 2h.

^b Isolated yield based on 1. ^c With 35% yield of bis-acylated product.

Table 3. Acylation of 2-arylbenzo[*d*]thiazole with primary alcohols^a

^a Conditions: 2-arylbenzo[*d*]thiazole **1i** (0.2 mmol), primary alcohols **2** (0.6 mmol), Pd(OAc)₂ (5 mol%), TBHP (7.0 equiv), BQ (10 mol%), PhCl, 110 °C, 2h.

^b Isolated yield based on **1i**.

Scheme 1 Plausible mechanism for the Pd-catalyzed *ortho*-acylation reaction.

Palladium-catalyzed direct *ortho*-acylation through an oxidative coupling of 2-arylbenzothiazoles with benzylic alcohols

Qiuping Ding,^{*} Huafang Ji, Changqing Ye, Jiajia Wang, Junyan Wang, Liyun Zhou and Yiyuan Peng*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

Supporting Information

1. Characterization data of some new substrate 1. S	2-S6
---	------

2. NMR spectra of all new compounds **3** and **1**. S7-S45

^{*} Corresponding author: Tel.: +86 791 88120380; fax: +86 791 88120380; E-mail: <u>dqpjxnu@gmail.com;</u> yiyuanpeng@yahoo.com

2-(2-chlorophenyl)benzo[*d*]thiazole (**1b**) mp: 86-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.34 (m, 3H), 7.41-7.46 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.17 (dd, *J* = 2.4, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 121.4, 123.5, 125.5, 126.3, 127.1, 130.8, 131.1, 131.8, 132.3, 132.7, 136.2, 152.6, 164.1;

2-(2-chlorophenyl)-6-methylbenzo[*d*]thiazole (**1c**) mp: 101-102 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.30-7.35 (m, 2H), 7.46 (d, *J* = 6.4 Hz, 1H), 7.65 (s, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 121.0, 123.0, 127.1, 128.0, 130.8, 130.9, 131.7, 132.4, 132.6, 135.6, 136.4, 150.7, 163.0;

6-chloro-2-(2-chlorophenyl)benzo[*d*]thiazole (**1d**) mp: 136-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.42 (m, 2H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.50-7.54 (m,

1H), 7.90 (s, 1H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.20-8.24 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 120.9, 124.2, 127.2, 130.9, 131.4, 131.7, 131.8, 132.7, 137.3, 151.0, 164.6;

2-(2-chlorophenyl)-6-fluorobenzo[*d*]thiazole (**1e**) mp: 127-128 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 8.8 Hz, 1H), 7.35-7.37 (m, 2H), 7.46-7.52 (m,1H), 7.57 (d, J = 8.0 Hz, 1H), 8.01-8.05 (m, 1H), 8.17-8.21 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 107.4 (d, ²*J*_{C-F} = 26.5 Hz), 115.1 (d, ²*J*_{C-F} = 24.7 Hz), 124.5 (d, ³*J*_{C-F} = 9.3 Hz), 127.1, 130.8, 131.2, 131.6, 131.9, 132.6, 137.1 (d, ³*J*_{C-F} = 11.1 Hz), 149.1, 160.6 (d, ¹*J*_{C-F} = 244.8 Hz), 163.8;

2-(2-fluorophenyl)benzo[*d*]thiazole (**1f**) mp: 97-98 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 9.6 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.35-7.44 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 1H), 8.39 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.4 (d, ²*J*_{C-F} = 21.8 Hz), 121.4, 121.5, 123.3, 124.7, 125.3, 126.3, 129.8, 132.1 (d, ³*J*_{C-F} = 6.8 Hz), 135.8 (d, ³*J*_{C-F} = 6.8 Hz), 152.6, 160.6 (d, ¹*J*_{C-F} = 252.0 Hz), 161.0;

2-(2-fluorophenyl)-6-methylbenzo[*d*]thiazole (**1g**) mp: 111-112 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.15-7.29 (m, 3H), 7.37-7.42 (m, 1H), 7.65 (s, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 8.37 (dt, *J* = 1.6, 8.0 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 116.3 (d, ²*J*_{C-F} = 21.9 Hz), 121.1, 121.6 (d, ³*J*_{C-F} = 11.0 Hz), 122.8, 124.6, 128.0, 129.7, 131.9 (d, ³*J*_{C-F} = 8.7 Hz), 135.5, 136.0 (d, ³*J*_{C-F} = 7.8 Hz), 150.7, 160.0, 160.5 (d, ¹*J*_{C-F} = 251.8 Hz);

6-chloro-2-(2-fluorophenyl)benzo[*d*]thiazole (**1h**) mp: 149-149 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 9.2 Hz, 1H), 7.30 (t, *J* = 6.8 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.88 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 8.35-8.43 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 116.4 (d, ²*J*_{C-F} = 21.8 Hz), 121.0, 121.1, 124.0, 124.7, 127.2, 129.7, 131.2, 132.4 (d, ³*J*_{C-F} = 8.7 Hz), 136.9 (d, ³*J*_{C-F} = 8.4 Hz), 151.1, 160.6 (d, ¹*J*_{C-F} = 252.1 Hz), 161.5 (d, ³*J*_{C-F} = 5.9 Hz);

6-fluoro-2-(2-fluorophenyl)benzo[*d*]thiazole (**1i**) mp: 124-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.31 (m, 3H), 7.43-7.46 (m, 1H), 7.59 (dd, *J* = 2.4, 8.0 Hz, 1H), 8.03 (dd, *J* = 4.8, 9.2 Hz, 1H), 8.36 (dt, *J* = 1.6, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 107.5 (d, ²*J*_{C-F} = 26.5 Hz), 115.1 (d, ²*J*_{C-F} = 24.7 Hz), 116.4 (d, ²*J*_{C-F} = 21.8 Hz), 121.2 (d, ³*J*_{C-F} = 11.2 Hz), 124.3 (d, ³*J*_{C-F} = 9.4 Hz), 124.7, 129.6, 132.2 (d, ³*J*_{C-F} = 8.7 Hz), 136.7 (d, ³*J*_{C-F} = 8.5 Hz), 136.8 (d, ³*J*_{C-F} = 8.4 Hz), 149.2, 160.4 (d, ¹*J*_{C-F} = 251.9 Hz), 160.5 (d, ³*J*_{C-F} = 244.3 Hz), 160.8;

6-methyl-2-(*o*-tolyl)benzo[*d*]thiazole (**1k**) mp: 97-98 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.56 (s, 3H), 2.71 (s, 3H), 7.39-7.44 (m, 2H), 7.50-7.53 (m, 2H), 7.80 (s, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 8.51 (d, *J* = 8.4 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 21.8, 120.8, 121.5, 127.0, 127.9, 130.2, 131.2, 132.1, 132.4, 132.6, 137.7, 138.2, 143.5, 169.6;

6-chloro-2-(*o*-tolyl)benzo[*d*]thiazole (11) mp: 94-95 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.64 (s, 3H), 7.28-7.36 (m, 3H), 7.43 (dd, *J* = 2.0, 8.8 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 6.0 Hz, 1H), 7.97 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 121.0, 124.1, 126.2, 127.0, 130.3, 130.5, 131.0,

131.7, 132.6, 136.7, 137.4, 152.4, 168.5;

6-fluoro-2-(*o*-tolyl)benzo[*d*]thiazole (**1m**) mp: 64-65 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.19 (dt, *J* = 2.4, 8.8 Hz, 1H), 7.25-7.33 (m, 3H), 7.52 (dd, *J* = 2.4, 8.0 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 8.00 (dd, *J* = 4.8, 9.2 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.5, 107.6 (d, ²*J*_{C-F} = 26.6 Hz), 114.8 (d, ²*J*_{C-F} = 24.6 Hz), 124.3 (d, ³*J*_{C-F} = 9.3 Hz), 126.2, 130.1, 130.5, 131.7, 132.8, 136.5 (d, ³*J*_{C-F} = 11.1 Hz), 137.3, 150.5, 160.5 (d, ¹*J*_{C-F} = 244.1 Hz), 167.7;

2-(*m*-tolyl)benzo[*d*]thiazole (**1n**) mp: 72-73 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.39-7.43 (m, 1H), 7.75-7.81 (m, 2H), 7.88 (s, 1H), 8.04 (d, *J* = 7.6 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 121.6, 123.2, 124.9, 125.1, 126.3, 128.0, 128.9, 131.8, 133.6, 135.1, 138.8, 154.2, 168.3;

6-chloro-2-(*m*-tolyl)benzo[*d*]thiazole (**10**) mp: 136-137 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 7.27 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.79 (s, 1H), 7.86 (s, 1H), 7.92 (d, *J* = 7.6 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 121.2, 123.8, 124.8, 127.1, 128.0, 128.9, 130.9, 132.0, 133.1, 136.2, 138.9, 152.7, 168.8;

6-fluoro-2-(*m*-tolyl)benzo[*d*]thiazole (**1p**) mp: 82-83 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 7.11-7.15 (m, 1H), 7.20 (d, J = 6.4 Hz, 1H), 7.27 (t, J = 6.0 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 6.0 Hz, 1H), 7.79 (s, 1H), 7.91-7.94 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.3, 107.8 (d, ²*J*_{C-F} = 26.6 Hz), 114.8 (d, ²*J*_{C-F} = 24.5 Hz), 124.0 (d, ³*J*_{C-F} = 9.3 Hz), 124.7, 127.8, 128.9, 131.8, 133.2, 136.0 (d, ³*J*_{C-F} = 11.1 Hz), 138.8, 150.7, 160.4 (d, ¹*J*_{C-F} = 244.2 Hz), 167.9;

2-(3-chlorophenyl)benzo[*d*]thiazole (**1q**) mp: 111-112 °C;

¹H NMR (400 MHz, CDCl₃) *δ* 7.25-7.34 (m, 3H), 7.43 (t, *J* = 5.6 Hz, 1H), 7.75-7.80 (m, 2H), 8.01 (d, *J* = 8.8 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 121.7, 123.5, 125.5, 125.6, 126.5, 127.3, 130.2, 130.8, 135.0, 135.1, 135.2, 154.0, 166.1;

2-(3-chlorophenyl)-6-methylbenzo[*d*]thiazole (**1r**) mp: 120-121 °C;

¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 6.8 Hz, 1H), 7.52 (s, 1H), 7.79 (d, *J* = 6.8 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.01 (s, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 121.4, 122.9, 125.5, 127.2, 128.1, 130.1, 130.5, 135.1, 135.2, 135.4, 135.7, 152.1, 165.1;

S6

000'0----

-0.000

30 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

-0.000

