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Asymmetric Functionalisation of Prochiral 1,3-Diols Based on an Efficient 1,6-Chiral
Induction: the Diastereoselective C—O Bond Fission in Chiral -Arylsulfinyl Acetal via

Two Types of Chelation Control

Chuzo lwata,* Naoyoshi Maezaki, Manabu Murakami, Motohiro Soejima, Tetsuaki Tanaka and Takeshi

Imanishi

Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan

The novel asymmetric functionalisation of a prochiral 1,3-diol is accomplished by the diastereoselective C-O bond
fission of the chiral -arylsulfinyl acetal via two types of chelation controlled transition states (A and C in Scheme 4).

1,3-Diol derivatives are very useful as versatile building blocks
in many natural product syntheses.! The asymmetric function-
alisation of prochiral 1,3-diols is one of the most efficient
methods for chiral 1,3-diol construction.2 While the chirality
induction to prochiral 1,3-diols by enzymatic reactions are
well known, the approach by chemical methods is rare.
Recently, we reported asymmetric functionalisation of pro-
chiral 1,3-diols by the intramolecular acetalisation of the
prochiral 1,3-diols with chiral (3-keto sulfoxides followed by
the diastereoselective C—-O bond fission of the acetals under
acidic conditions to give the chiral dihydropyran derivatives 2,
which were equivalent to the monoprotected 1,3-diols.> We
have applied this strategy to the synthesis of (+)-talaromycin
A and (-)-talaromycin B (Scheme 1).# However, the
cleavages of the bicyclic acetal 1 were probably affected by

both of the chiral centres. Therefore, we designed the bicyclic
acetal 3 in order to accomplish the diastereoselective C-O
bond fission controlled only by a sulfinyl chirality. Such a
transformation is equivalent to the rare 1,6-chiral induction.
The chiral dioxabicyclo[2.2.2]octane 31 was prepared from
compound 5 in 60% overall yield as shown in Scheme 2.

T Spectroscopic data for compound 3: [«]p?® + 121 (¢ 1.05, CHCl,);
IR (CHCl3): vpay/em—! 3400, 2970, 2870, 1600, 1490, 1350, 1060,
1030; *H NMR (500 MHz, CHCl;): & 1.86-1.99 (2H, m), 2.03-2.13
(1H. m), 2.32-2.43 (1H, m), 2.40 (3H, 5), 2.85 (1H. d, J 13 Hz), 3.01
(1H.d, J13Hz), 4.03 (1H, d, J8 Hz), 4.12 (1H, d, J8§ Hz), 4.17 (1H,
d,J8Hz), 4.23 (1H, d,J8 Hz), 7.30 (2H, d, /8 Hz), 7.55 (2H,d, /8
Hz); miz: 266 (M*); m/z 266.0989 (Calc. 266.0977).
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Scheme 2 Reagents and conditions: i, (COCl),, dimethyl sulfoxide
(DMSO), triethylamine, CH,Cl,, —60°C (76%); ii, (EtO)-
P(O)CH,CO;Et, NaH, THF, 0°C (84%); iii, H,, Pd~-C, MeOH,
room temp. (quant.); iv, BusLi, (R)-methyl p-tolyl sulfoxide, THF,
=78°C (72%); v, p-MeC¢HsSO;H, H,O, benzene, room temp.
(96%)

Table 1 The reaction of bicyclic acetal 3 under acidic conditions
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Table 2 The reaction of bicyclic acetal 3 under basic conditions
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Ratio«

Conditions (equiv.) Yield (%) 4a:4b

TiCl, (10), DME,? —50°C No reaction —

TiCl4(10), DME, —20°C 83 64:36
TiCl, (10), DME, room temp. Complex mixture = —
TiCl4 (10), Et,0, —20°C 80 53:47
TiCl, (10), THF, —20°C 81 72:28
CF;CO,H (10), THF, room temp. ~ 48¢ 1:1
AICl5 (10), THF, room temp. 37 1:1

e Determined by HPLC as the benzoate unless stated otherwise.
& DME = 1,2-dimethoxyethane. < Isolated as the trifluoroacetate.
The ratio was determined by 500 MHz 'H NMR spectroscopy.

Ratio«

Conditions (equiv.) Yield (%) 4a:4b

LDA (6). THF, —78°C to room temp. 95 41:59
LDA (6), HMPA? (6), THF, —78 °C to

room temp. 94 33:67
LDA (6), 12-crown-4 (6), THF, =78 °C to

room temp. 92 28:72
LDA (6), DABCO? (6), THF, —78°Cto

room temp. 81 28:72
LDA (6), TMEDA (6), THF, —78°C to

room temp. 92 25:75
LiNEt, (6), THF, —78 °C 91 35:65

@ Determined by HPLC as the benzoate. #» HMPA = hexamethyl-
phosphorus triamide, DABCO = 1,4-diazabicyclo [2.2.2] octane.
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Scheme 3 Reagents and conditions: i, p-MeC¢H4SO,Cl, triethylamine,
dimethylaminopyridine, CH>Cl,, room temp.; Oz, MeOH, ~78°C
then Me,S, room temp. (8a: 72%. 8b: 72%): ii, NaClO,, DMSO,
NaH,PO, buffer (9a: 96%, 9b: 96%); iii, Raney Ni, EtOH, room
temp. [(5)-10: quant., (R)-10: quant.]
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For the regioselective C-O bond cleavage in 3, various
conditions were employed and the results are summarized in
Tables 1 and 2. Treatment of 3 with titanium tetrachloride in
tetrahydrofuran (THF) at —20°C resulted in a predominant
cleavage at the bond a’ yielding mainly 4a, while under basic
conditions [lithium diisopropylamide (LDA), N,N,N',N’'-
tetramethylethylenediamine (TMEDA), THF, -78°C to
room temp.] The bond *b" was cleaved more easily.i Other
conditions employed were less effective.

The absolute configuration of the products 4a and b was
confirmed by their transformation into the known vy-lactone
(R)-10 and the enantiomer (5)-10, respectively as shown in
Scheme 3. The compounds 4a and b were separated as
p-toluenesulfonates by HPLC (column: Waters, RCM 25 X
10, mobile phase :hexane-AcOEt 1:1). The p-toluenesulf-
onate (Ts) of 4a was converted to the aldehyde 8a by reductive
ozonolysis. Treatment of 8a with sodium chlorite resulted in
the formation of y-lactone 9a directly. In the reaction, the
carboxylate anion generated by the oxidation of the aldehyde
attacked the p-toluenesulfonate intramolecularly to afford the
v-lactone 9a. After desulfurisation by Raney Ni, the resulting
v-lactone (R)-10 showed the identical specific rotation with
the authentic data. {(R)-10: [«]p3° —33.0 (¢ 0.68, CHCl3), lit.
[a]p23 —33.1 (CHCl3)}. The other p-toluenesulfonate 4b was
also converted to (5)-10 {{«]p2? +34.1 (¢ 0.57, CHCly)} by the
same procedure.

We suggest the following reaction mechanism of the acetal
cleavage. The bidentate titanium tetrachloride would coordi-
nate between the acetal and the sulfinyl oxygens. The bulky
tolyl group would be situated at an equatorial position in a
chair-like six-membered transition state (A and B in Scheme
4). On the other hand, the sulfinyl oxygen would coordinate
with the adjacent lithium atom to form a four-membered ring
under basic condtions,® in which the tolyl group would be trans
to the bulky bicyclo ring (C and D in Scheme 4). Since the
sulfinyl group tends to locate anti to the bulky 7-methylene
group rather than the oxygens,§ the transition states A and C
would be more favourable than the transition states B and D,
respectively.| Therefore, titanium tetrachloride affords the
opposite diastereoselectivity to the amide bases.

In conclusion, we have described a novel method for the
asymmetric functionalisation of prochiral 1,3-diols by dia-
stercoselective C-O bond fission of the chiral f-arylsulfinyl

f The initially resulting o, p-unsaturated sulfoxide is completely
isomerized to the f3,y-unsaturated sulfoxide under these reaction
conditions.

§ The result of MM2 calculation in 1-ethyl-2,6-dioxabicyclo[2.2.2]oct-
ane shows that conformation E is 0.6 kcal mol—! more stable than
conformation F.

o]
s /
O7>o [¢]
Me Me
E F

1 The steric repulsion between the 7-methylene group and the
pseudo-axial chloride attached to the titanium atom also seems to
make transition state B unstable. Since the monodentate aluminium
chloride or trifluoroacetic acid cannot form a cyclic transition state
like transition state A or B. no selectivity is observed.
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acetal. The base promoted acetal cleavage is a new application
of the anion neighbouring chiral sulfinyl groups to asymmetric
synthesis.
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