A Simple Route to Molybdenum–Carbene Catalysts for Alkene Metathesis

Guy Schoettel, Jacky Kress, and John A. Osborn*

Laboratoire de Chimie des Métaux de Transition et de Catalyse, UA au CNRS no. 424, Université Louis Pasteur, Institut Le Bel, 4, rue Blaise Pascal, 67000 Strasbourg, France

A convenient method for the synthesis of high oxidation state tetra-co-ordinate molybdenum–carbene complexes such as $Mo(NBu^t)(CHBu^t)[OCH(CF_3)_2]_2$, which are catalytically active in alkene metathesis reactions, is reported.

Carbene complexes of the type $M(NR)(CHBu^t)(OR')_2$ (M = W, Mo), which have recently been shown to act as catalysts for alkene metathesis reactions,¹⁻⁶ function efficiently without the need for a Lewis acid cocatalyst. Ring opening polymerisation reactions of cyclic alkenes, in particular, have been developed by which polyacetylenes^{5,6} and monodispersed polymers or block copolymers of norbornene derivatives^{3,4} can be synthesised. However, the initial synthesis of such complexes^{1,2} is far from being straightforward, and the more convenient preparation of tungsten derivatives recently published cannot be extended to molybdenum⁷ and appears to be limited to only one type of imido ligand NR (R = 2,6-di-isopropylphenyl).

We report a simple method for the high yield synthesis of analogous molybdenum compounds containing the t-butylimido ligand. Examples of t-butylimido-neopentylidene molybdenum complexes have been described previously.^{8,9}

In the first step, MoO_2Cl_2 is treated under nitrogen with Bu^tNCO (2 equiv.) in acetonitrile (70 °C, 24 h) and yellow $Mo(NBu^t)_2Cl_2^{\dagger}$ (1) is obtained in high yield (95%) (Scheme 1). This bisimido compound was reported previously;¹⁰ however, it was incompletely characterised¹⁰ and our new method of preparation appears to be much simpler. Complex

(2): i.r. (v in cm⁻¹): 1230, 1208 (v_{Mo=N}); ¹H n.m.r. (200 MHz, C₆D₆, δ): 1.89 (s, 4H, CH₂CMe₃), 1.52 (s, 18H, NCMe₃), 1.31 (s, 18H, CH₂CMe₃); ¹³C{¹H} n.m.r. (50 MHz, C₆D₆, δ): 74.8 (CH₂CMe₃), 67.4 (NCMe₃), 34.1 (NCMe₃), 32.7 (CH₂CMe₃).

(3): i.r. (v in cm⁻¹): 3320, 3250 (v_{N-H}); 1200 (v_{Mo-N}); 748, 689 (v_{Mo-O}); ¹H n.m.r. (200 MHz, C₆D₆, δ): 12.68 (s, 1H, CHCMe₃), 4.55 [sept, ³J_{HF} 7 Hz, 2H, OCH(CF₃)₂], 1.45 (s, 9H, NCMe₃), 1.27 (s, 9H, CHCMe₃), 0.83 (s, 9H, NH₂CMe₃).

(4): i.r. (v in cm⁻¹): 1210 ($\nu_{Mo=N}$); 743, 690 (ν_{Mo-O}); ¹H n.m.r. (200 MHz, C₆D₆, δ): 12.73 (s, 1H, CHCMe₃), 4.61 [sept, ³J_{HF} 7 Hz, 2H, OCH(CF₃)₂], 1.49 (s, 9H, NCMe₃), 1.31 (s, 9H, CHCMe₃); ¹³C{¹H} n.m.r. (50 MHz, C₆D₆, δ): 301.6 (CHCMe₃), 121.5, 121.1 [q, ¹J_{CF} 290 Hz, OCH(CF₃)₂], 73.7 (NCMe₃), 71.5 [sept, ²J_{CF} 32 Hz, OCH(CF₃)₂], 40.2 (CHCMe₃), 32.6 (NCMe₃), 30.5 (CHCMe₃); 'Off resonance': 301.6 (d, ¹J_{CH} 119 Hz).

(5), (6): ¹H n.m.r. (200 MHz, C_6D_6 , δ): (5): 12.62 (d, ³J_{PH} 6 Hz, 1H, CHCMe₃), 4.70 [sept, 2H, OCH(CF₃)₂], 1.21 (s, 9H, NCMe₃), 1.10 (s, 9H, CHCMe₃), 0.97 (s, 9H, PMe₃); (6): 13.16 (s, 1H, CHCMe₃), 8.75 (d, 2H, ortho-NC₅H₅), 6.73 (dd, 2H, meta-NC₅H₅), 6.40 (t, 1H, para-NC₅H₅), 4.65 [sept, 2H, OCH(CF₃)₂], 1.19 (s, 9H, NCMe₃), 1.18 (s, 9H, CHCMe₃).

(7), (8): ¹H n.m.r. (200 MHz, δ): (7) (C₆D₆): 13.19 (s, 1H, CHPh), 7.66 (d, 2H, ortho-Ph), 7.40—7.10 (m, 2H, meta-Ph), 7.0 (t, 1H, para-Ph), 4.02 [sept, ³J_{HF} 7 Hz, 2H, OCH(CF₃)₂], 1.56 (s, 9H, NCMe₃); (8) (CD₂Cl₂): 4.49 (br., 2H, =CCH₂), 4.07 [sept, ³J_{HF} 7 Hz, 2H, OCH(CF₃)₂], 3.75 (br., 2H, =CC'H'₂), 2.12 (br., 2H, =CCH₂CH₂), 1.52 (br., 2H, =CCH₂C'H'₂), 1.45 (s, 9H, NCMe₃).

(9): 1 H n.m.r. (200 MHz, C₆D₆, δ): 12.10 (t, 1H, CHCH₂CO₂Me), 4.31 (d, 2H, CHCH₂CO₂Me), 3.77 (s, 3H, CHCH₂CO₂Me), 1.44 (s, 9H, NCMe₃).

(10): ¹H n.m.r. (200 MHz, C_6D_6 , δ): 5.45, 4.98 [sept, ³J_{HF} 7 Hz, 1H, OCH(CF₃)₂], 3.47 (d, 2H, CH_AH_BCMe₃), 2.55 (d, 2H, CH_AH_BCMe₃), 1.30 (s, 9H, NCMe₃), 1.13 (s, 18H, CH₂CMe₃).

(1) can be recrystallised from methylene chloride/pentane to yield fine yellow needles.

Complex (1) reacts with neopentyl-lithium to yield Mo(N-Bu^t)₂(CH₂Bu^t)₂† (2) as a brown, very air-sensitive oil (yield 85%). This dineopentyl compound is analogous to the methyl¹⁰ and mesityl¹¹ derivatives found in the literature. The addition of two equivs. of $(CF_3)_2$ CHOH to (2) in pentane then leads to the penta-co-ordinate neopentylidene complex Mo(NBu^t)(CHBu^t)[OCH(CF₃)₂]₂(NH₂Bu^t) (3)†, a brown, highly soluble oil, in 80% yield (Scheme 1).

Finally, dissolution of (3) in acetonitrile leads *in situ* to free t-butylamine and Mo(NBu^t)(CHBu^t)[OCH(CF₃)₂]₂(MeCN), which loses acetonitrile *in vacuo* to give the desired tetra-coordinate carbene complex Mo(NBu^t)(CHBu^t)[OCH(CF₃)₂]₂ (4)[†] as a brown oil. The co-ordinated t-butylamine molecule in (3) can, of course, also be easily replaced by stronger Lewis bases to yield further isolatable penta-co-ordinate adducts of the type Mo(NBu^t)(CHBu^t)[OCH(CF₃)₂]₂(L) [L = PMe₃ (5), C₅H₅N (6)].[†] The molecular structures shown for compounds (4) and (3,5,6) are consistent with their i.r. and n.m.r. spectra.

When (4) is treated with a terminal alkene, its neopentylidene ligand is stoicheiometrically exchanged with the substituted fragment of this alkene; further carbene complexes such as Mo(NBu^t)(CHPh)[OCH(CF₃)₂]₂ (7) and Mo(NBu^t)-[$\overline{C(CH_2)_3CH_2}$][OCH(CF₃)₂]₂ (8)[†] could thus be synthesised by addition of, respectively, CH₂=CHPh and CH₂= $\overline{C(CH_2)_3CH_2}$ to (4), and isolated as brown powders (90% yield).

Productive metathesis of the terminal alkene is not observed in these reactions, but the tetra-co-ordinate complexes (4), (7), and (8) behave like their analogues² as effective catalysts for the metathesis of internal alkenes. For instance, solutions of (4) in chlorobenzene catalyse the metathesis of 100 equivs. of pent-2-ene to the equilibrium mixture of but-2-enes and hex-3-enes at an initial rate of 4 mol Mo min⁻¹ at room temperature. This rate remains, however, significantly lower than that obtained with the most active homologous complex $Mo(N-2,6-Pri_2C_6H_3)(CHBut)[OC(Me)-(CF_3)_2]_2$.² Methylpent-3-eneoate converts compound (8) into

Scheme 1. Reagents and conditions: i, -2CO₂, 70 °C, 24 h, acetonitrile; ii, -2LiCl, 1 h, pentane; iii, -MeBu^t, 10 min, pentane; iv, NH₂Bu^t, acetonitrile, then vacuum.

^{† (1):} satisfactory elemental analysis was obtained; i.r. (Nujol mull, ν in cm⁻¹): 1235, 1200 ($v_{Mo=N}$); 325, 290 (v_{Mo-Cl}); ¹H n.m.r. (200 MHz, C₆D₆, δ): 1.44 (NCMe₃); ¹³C{¹H} n.m.r. (50 MHz, C₆D₆, δ): 74.1 (NCMe₃), 30.1 (NCMe₃).

mainly Mo(NBu¹)(CHCH₂CO₂Me)[OCH(CF₃)₂]₂ (9), one of the two catalytic propagating carbene species expected in this case (as shown by *in situ* ¹H n.m.r. spectroscopy),[†] but does not undergo further metathesis under these conditions. The corresponding propagating carbene complexes expected for the metathesis of norbornene or pent-2-ene in the presence of (4) or (8) were observed similarly.

Unfortunately, reaction of (2) with many other alcohols does not lead to carbene complexes of type (3). Poorly acidic alcohols like MeOH, Bu^tCH₂OH, or Bu^tOH do not react at all, whereas various phenol derivatives yield mainly dineopentyl precursors of (3) such as Mo(NBu^t)(NHBu^t)-(OAr)(CH₂Bu^t)₂ or Mo(NBu^t)(OAr')₂(CH₂Bu^t)₂.¹² An analogue of the latter, Mo(NBu^t)[OCH(CF₃)₂]₂(CH₂Bu^t)₂, (10), is indeed detected *in situ* by n.m.r. spectroscopy[†] during the reaction of (2) with (CF₃)₂CHOH to yield (3). Specific electronic and steric constraints seem thus to be required for the third step of Scheme 1 to occur, particularly in the probable hexa-co-ordinate intermediates such as Mo(N-Bu^t)(CH₂Bu^t)₂-[OCH(CF₃)₂]₂(NH₂Bu^t). However, extension of this method to complexes containing other imido ligands, in particular those with stronger electron withdrawing substituents, now seems feasible and we can anticipate¹³ an increase in the catalytic activity of such complexes.

Received, 7th March 1989; Com. 9/01007F

References

- 1 C. J. Schaverien, J. C. Dewan, and R. R. Schrock, J. Am. Chem. Soc., 1986, 108, 2771.
- 2 J. S. Murdzek and R. R. Schrock, Organometallics, 1987, 6, 1373.
- 3 J. S. Murdzek and R. R. Schrock, *Macromolecules*, 1987, 20, 2640.
- 4 R. R. Schrock, J. Feldman, L. F. Cannizzo, and R. H. Grubbs, Macromolecules, 1987, 20, 1169.
- 5 K. Knoll, S. A. Krouse, and R. R. Schrock, J. Am. Chem. Soc., 1988, 110, 4424.
- 6 F. L. Klavetter and R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 7807.
- 7 R. R. Schrock, S. A. Krouse, K. Knoll, J. Feldman, J. S. Murdzek, and D. C. Yang, J. Mol. Catal., 1988, 46, 243.
- 8 D. Ehrenfeld, J. Kress, B. D. Moore, J. A. Osborn, and G. Schoettel, J. Chem. Soc., Chem. Commun., 1987, 129.
- 9 G. Schoettel, J. Kress, J. Fischer, and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1988, 914.
- 10 W. A. Nugent, Inorg. Chem., 1983, 22, 965.
- 11 A. C. Sullivan, G. Wilkinson, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 53.
- 12 G. Schoettel, Ph.D. Thesis, 1988, ULP, Strasbourg
- 13 J. Kress, A. Aguero, and J. A. Osborn, J. Mol. Catal., 1986, 36, 1.