ORIGINAL PAPER

Efficient synthesis of methyl 4-chloro-6-fluoro-3-formyl-2*H*-chromene-2-carboxylate and its derivatives

Andrii I. Kysil · Viktoria S. Moskvina · Marian V. Gorichko · Volodimyr P. Khilya

Received: 8 March 2011/Accepted: 16 July 2011/Published online: 24 August 2011 © Springer-Verlag 2011

Abstract Methyl 4-chloro-6-fluoro-3-formyl-2*H*-chromene-2-carboxylate was synthesized conveniently using Vilsmeier reagent. A series of new 2*H*-chromenes was prepared in high yields by introducing a corresponding β -halovinylaldehyde into condensation and cyclization reactions with active methylene compounds.

Keywords Chromanes \cdot Chromenes \cdot β -Halovinylaldehydes \cdot Hetarylacetonitriles \cdot Condensation

Introduction

Chromanes and 2*H*-chromenes constitute two important classes of oxygen-containing heterocycles which have attracted significant synthetic interest due to their reactivity and biological activity of naturally occurring representatives [1, 2]. Members of these classes, such as sorbinil (1) [3] and 2 [4], have demonstrated aldose reductase inhibition properties which can be used in the treatment of complications of diabetes; others such as antioxidants 3 [5] or insulin secretion inhibitors 4 [6] possess the potential to be biological "response modifiers" (Fig. 1). All of these compounds contain the benzopyran moiety, but the limited number of reported compounds prohibits an assessment of how their key functional groups influence inhibitory activity.

V. F. KIIIYa

Department of Chemistry, Kyiv National Taras Shevchenko University, Kyiv, Ukraine e-mail: v.moskvina@gmail.com

Results and discussion

In this paper, we report our results regarding the synthesis of novel methyl 4-chloro-6-fluoro-3-formyl-2*H*-chromene-2carboxylate (**6**) from methyl 6-fluoro-4-oxochromane-2carboxylate (**5**) and studying its reactions with active methylene compounds. It is well known that β -halovinylaldehydes have been extensively employed as versatile reactive intermediates in the synthesis of a large variety of aliphatic, aromatic, and heterocyclic compounds [7]. It should be noted that carboxylate **5** and its corresponding carboxylic acid were used as key intermediates in the synthesis of fidarestat, a potent inhibitor of aldose reductase used to treat incurable complications of diabetes [8, 9].

Methyl 6-fluoro-4-oxochromane-2-carboxylate (5) [10] reacted with Vilsmeier reagent to afford the corresponding novel β -chlorocarboxyaldehyde derivative **6** only (Scheme 1).

Transformation via Vilsmeier's methodology has already been described for other simple benzopyranones, but examples are scarce [11–13]. Literature sources also contain data about the Vilsmeier formylation of 7-meth-oxy-2,2,-dimethyl-4-chromanones, which were readily converted into 4-chloro-6-formyl-7-methoxy-2,2-dimethyl-2*H*-chromenes with high yields (up to 80%) [14, 15].

Methyl 4-chloro-6-fluoro-3-formyl-2*H*-chromene-2-carboxylate (6) was then introduced into the reaction, with malononitrile and hetarylacetonitriles **8a–8i** acting as 1,3-C,N-binucleophiles.

In each case, mild conditions were used (heating during 20–30 min in *i*-PrOH or DMF), and products of condensation **7** and **9a–9i** were obtained with good yields (Scheme 2, Table 1). Continuous reflux of product **9a** in DMF for 2 h led to the intramolecular nucleophilic substitution of the chlorine atom and resulted in a heterocyclization product **10** (Scheme 3). Based on the

A. I. Kysil \cdot V. S. Moskvina (\boxtimes) \cdot M. V. Gorichko \cdot V. P. Khilya

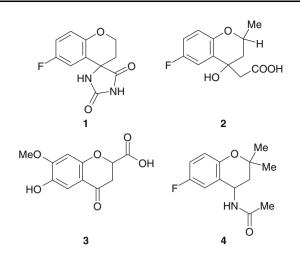
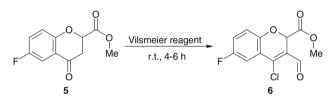
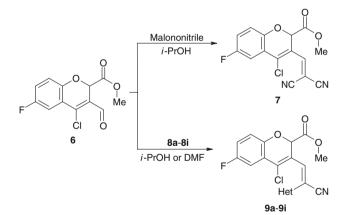
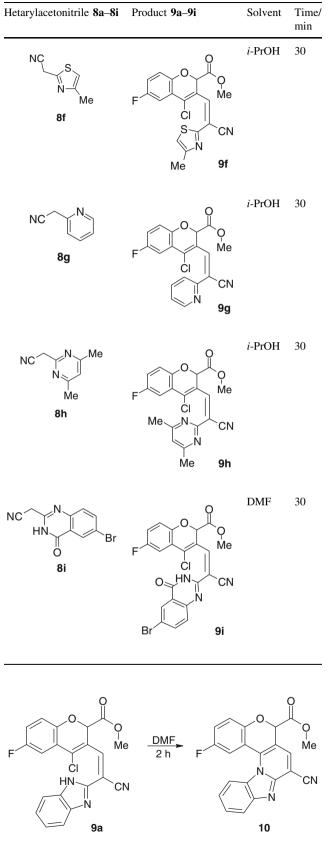
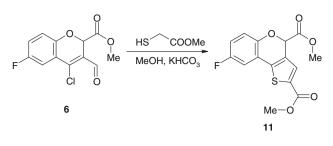




Fig. 1 Biologically active compounds containing the chromane skeleton

Scheme 2


mild conditions required for the reaction, the Z-configuration was assigned to compound 9a; such heterocyclization reaction would not be so easily possible for an *E*-isomer. The vinyl proton signal in the ¹H NMR spectra of 9a-9i is found at 6.36–6.61 ppm, implying that the configuration is the same for all of these compounds.

The β -chlorocarboxyaldehyde derivative **6** also reacted with methyl mercaptoacetate in methanol under reflux in the presence of potassium bicarbonate to give methylthie-nocarboxylic ester derivative **11** (Scheme 4).


Table 1 Reactions of chloroaldehyde 6 with hetarylacetonitriles 8

Hetarylacetonitrile 8a–8i	Product 9a–9i	Solvent	Time/ min
NC N N H 8a	F CI HN CN Sa	DMF	20
NC N Me N Me 8b	F CI HN Me Me 9b	DMF	20
NC N N Me 8c	F CI Me-N SC SC SC SC SC SC SC SC SC SC SC SC SC	DMF	20
NC N N F F Bd	$F_{2}HC-N$	DMF	20
NC N Ph 8e	F Cl Ph N Se	i-PrOH	30

Table 1 continued

Scheme 4

Conclusions

To summarize, we have developed an efficient synthetic route to novel methyl-4-chloro-6-fluoro-3-formyl-2*H*-chromene-2-carboxylate and have studied its condensation and cyclization reactions with various active methylene compounds. The initial and obtained compounds contain the potentially bioactive 2*H*-chromene skeleton, and a study targeted at learning their biological activity is in progress.

Experimental

Reaction flow and the identity of obtained compounds was controlled by TLC on Merck F_{254} plates using chloroform:methanol (9:1, v/v) as the eluent. Melting points were determined using a Kofler-type Leica Galen III micro hot stage microscope. NMR spectra were recorded on a Mercury-400 spectrometer (spectrometer frequency for ¹H: 400 MHz, ¹³C: 100 MHz) from DMSO- d_6 solutions. The TMS signal was used as an internal standard. Elemental analyses for C, H, and N were conducted using a Perkin-Elmer C, H, N Analyzer; their results were found to be in good agreement ($\pm 0.2\%$) with the calculated values. Mass spectra were recorded on an Agilent 1100 LC/MSD instrument with chemical ionization (CI).

4-*Chloro-6-fluoro-3-formyl-2H-chromene-2-carboxylate* (**6**, C₁₂H₈ClFO₄)

To a mixture of 4.18 g DMF (57 mmol) and 7 g POCl₃ (46 mmol) in an ice bath at 0–5 °C, a solution of 6.2 g **5** (28 mmol) in 30 cm³ CH₂Cl₂ was added dropwise while maintaining the reaction temperature below 20 °C. After addition was completed, the reaction was continued at 50 °C for 2 h and then poured over crushed ice. The aqueous layer was extracted twice with 50 cm³ CH₂Cl₂. The combined CH₂Cl₂ extracts were dried over sodium sulfate and evaporated under reduced pressure. Purification by recrystallization from MeOH afforded the title compound as an off-white solid (5.8 g, 77%). M.p.: 126–128 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.12 (s, 1H, CHO), 7.44 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.30 (td, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz,

1H), 7.12 (dd, ${}^{4}J_{\rm HF} = 4.0$ Hz, ${}^{3}J_{\rm HH} = 8$ Hz, 1H), 5.87 (s, 1H), 3.62 (s, 3H) ppm; 13 C NMR (100 MHz, DMSO- d_{6}): $\delta = 193.4$, 172.6, 155.3, 153.2, 150.1, 137.9, 127.6, 117.4, 115.3, 112.6, 78.4, 54.2 ppm; MS: calcd. for C₁₂H₈ClFO₄ 270.64, found 270.64.

General procedure for the reaction of β -chlorocarboxyaldehyde **6** with nitriles

To a mixture of 10 cm³ *i*-PrOH or DMF (see Table 1) and 0.27 g chloroaldehyde **6** (1 mmol), the nitrile (1.2 mmol) was added with stirring. The resulting mixture was refluxed and stirred for 20–30 min and evaporated to dryness. The residue was subjected to appropriate purification.

Methyl 4-chloro-3-(2,2-dicyanovinyl)-6-fluoro-

2H-chromene-2-carboxylate (7, C₁₅H₈ClFN₂O₃)

Obtained from chloroaldehyde **6** in 0.3 g (96%) yield after column chromatography (CH₂Cl₂ as the eluent) as a yellow solid. M.p.: 173–175 °C; ¹H NMR (400 MHz, DMSO-*d₆*): $\delta = 8.30$ (s, 1H, CHC(CN)₂), 7.53 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.46 (td, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, ³J_{HH} = 8 Hz, 1H), 7.24 (dd, ⁴J_{HF} = 4.0 Hz, ³J_{HH} = 8 Hz, 1H), 6.40 (s, 1H), 3.66 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d₆*): $\delta = 172.6$, 155.4, 153.4, 153.6, 134.4, 127.6, 127.9, 115.8, 115.4, 113.6 (2C), 112.5, 105.3, 81.5, 52.5 ppm; MS: calcd. for C₁₅H₈ClFN₂O₃ 318.69, found 318.69.

Methyl 3-[(Z)-2-(1H-benzimidazol-2-yl)-2-cyanovinyl]-4-chloro-6-fluoro-2H-chromene-2-carboxylate

 $({\bf 9a},\,C_{21}H_{13}ClFN_3O_3)$

Obtained from chloroaldehyde **6** in 0.38 g (95%) yield after column chromatography (CH₂Cl₂ as the eluent) as an orange solid. M.p.: 201–204 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 13.21$ (br s, 1H, N*H*), 8.28 (s, 1H, C*H*C(CN)), 7.65 (dd, ³*J*_{HH} = 6.4 Hz, ⁴*J*_{HH} = 2.8 Hz, 2H), 7.49 (dd, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, 1H), 7.37 (td, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 2.8 Hz, 2H), 7.21 (dd, ⁴*J*_{HF} = 4.0 Hz, ³*J*_{HH} = 8 Hz, 1H), 6.59 (s, 1H), 3.67 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.8$, 155.3, 153.4, 141.6, 146.3, 138.9 (2C), 134.2, 127.9, 127.4, 123.0 (2C), 116.4, 115.7, 115.8, 115.3 (2C), 112.3, 111.6, 82.4, 52.6 ppm; MS: calcd. for C₂₁H₁₃ClFN₃O₃ 409.80, found 409.81.

Methyl 4-chloro-3-[(Z)-2-cyano-2-(5,6-dimethyl-1Hbenzimidazol-2-yl)vinyl]-6-fluoro-2H-chromene-2carboxylate (**9b**, C₂₃H₁₇ClFN₃O₃)

Obtained from chloroaldehyde **6** in 0.4 g (91%) yield after recrystallization from *i*-PrOH as an orange solid. M.p.: 229–230 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 13.28$ (br s, 1H, NH), 8.27 (s, 1H, CHC(CN)), 7.52 (s, 1H), 7.50 (dd, ³ $J_{\rm HF} = 8.0$ Hz, ⁴ $J_{\rm HH} = 3$ Hz, 1H), 7.41 (td, ³ $J_{\rm HF} =$ 8.0 Hz, ${}^{4}J_{\rm HH} = 3$ Hz, ${}^{3}J_{\rm HH} = 8$ Hz, 1H), 7.37 (s, 1H), 7.25 (dd, ${}^{4}J_{\rm HF} = 4.0$ Hz, ${}^{3}J_{\rm HH} = 8$ Hz, 1H), 6.61 (s, 1H), 3.71 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H) ppm; 13 C NMR (100 MHz, DMSO- d_6): $\delta = 172.6$, 155.1, 153.2, 141.5, 146.4, 135.6 (2C), 134.1, 130.2 (2C), 127.9, 127.4, 118.4, 115.7, 115.8, 115.2 (2C), 112.2, 111.7, 82.3, 52.4, 21.0 (2C) ppm; MS: calcd. for C₂₃H₁₇ClFN₃O₃ 437.85, found 437.85.

Methyl 4-*chloro-3-[(Z)-2-cyano-2-(1-methyl-1H-benzimidazol-2-yl)vinyl]-6-fluoro-2H-chromene-*2-*carboxylate* (**9c**, C₂₂H₁₅ClFN₃O₃)

Obtained from chloroaldehyde **6** in 0.38 g (90%) yield after column chromatography (CH₂Cl₂ as the eluent) as an orange solid. M.p.: 168–170 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.19$ (s, 1H, CHC(CN)), 7.66 (dd, ³J_{HH} = 6.4 Hz, ⁴J_{HH} = 2.8 Hz, 2H), 7.40 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.32 (td, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.27 (dd, ³J_{HH} = 6.4 Hz, ⁴J_{HH} = 2.8 Hz, 2H), 7.15 (dd, ⁴J_{HF} = 4.0 Hz, ³J_{HH} = 8 Hz, 1H), 6.55 (s, 1H), 4.04 (s, 3H), 3.74 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 172.8$, 155.1, 153.2, 141.5, 146.1, 138.9, 134.4, 134.0, 127.9, 127.4, 123.0 (2C), 118.6, 115.7, 115.8, 115.2 (2C), 112.2, 111.7, 82.2, 52.4, 35.9 ppm; MS: calcd. for C₂₂H₁₅ClFN₃O₃ 423.83, found 423.83.

$$\label{eq:methyl} \begin{split} & \mbox{Methyl 4-chloro-$3-[(Z)-$2-cyano-$2-[$1-(diffuoromethyl)-1H-benzimidazol-$2-yl]vinyl]-$6-fluoro-2H-chromene-$2-carboxylate ($9d, $C_{22}H_{13}ClF_{3}N_{3}O_{3})$ \end{split}$$

Obtained from chloroaldehyde **6** in 0.44 g (96%) yield after column chromatography (CH₂Cl₂ as the eluent) as an orange solid. M.p.: 144–146 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.37$ (t, ² $J_{HF} = 57.6$ Hz, 1H, CHF₂), 7.99 (s, 1H, CHC(CN)), 7.91 (d, ² $J_{HH} = 8$ Hz, 1H), 7.86 (d, ² $J_{HH} = 8$ Hz, 1H), 7.56 (dd, ³ $J_{HF} = 8.0$ Hz, ⁴ $J_{HH} = 3$ Hz, 1H), 7.53 (d, ² $J_{HH} = 8$ Hz, 1H), 7.50 (d, ² $J_{HH} = 8$ Hz, 1H), 7.29 (dd, ⁴ $J_{HF} = 4.0$ Hz, ³ $J_{HH} = 8$ Hz, 1H), 7.29 (dd, ⁴ $J_{HF} = 4.0$ Hz, ³ $J_{HH} = 8$ Hz, 1H), 7.29 (dd, ⁴ $J_{HF} = 4.0$ Hz, ³ $J_{HH} = 8$ Hz, 1H), 6.57 (s, 1H), 3.74 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 172.8$, 155.1, 153.2, 141.6, 146.0, 138.9, 138.6, 134.2, 134.0, 127.9, 127.4, 122.8 (2C), 118.8, 115.6, 115.8, 115.4 (2C), 112.3, 111.6, 82.1, 52.3 ppm; MS: calcd. for C₂₂H₁₃ClF₃N₃O₃ 459.81, found 459.81.

Methyl 3-[(Z)-2-(1-benzyl-1H-imidazol-2-yl)-2cyanovinyl]-4-chloro-6-fluoro-2H-chromene-2carboxylate (**9e**, C₂₄H₁₇ClFN₃O₃)

Obtained from chloroaldehyde **6** in 0.37 g (84%) yield after column chromatography (CH₂Cl₂ as the eluent) as a yellow solid. M.p.: 78–80 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.59 (s, 1H), 7.53 (s, 1H), 7.38 (m, 3H), 7.31 (m, 2H), 7.20 (s, 1H, CHC(CN)), 7.15 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.10 (td, ³J_{HF} =

8.0 Hz, ${}^{4}J_{\rm HH} = 3$ Hz, ${}^{3}J_{\rm HH} = 8$ Hz, 1H), 7.08 (dd, ${}^{4}J_{\rm HF} = 4.0$ Hz, ${}^{3}J_{\rm HH} = 8$ Hz, 1H), 6.36 (s, 1H), 5.52 (s, 2H, CH₂), 3.57 (s, 3H) ppm; 13 C NMR (100 MHz, DMSO- d_6): $\delta = 172.4$, 157.8, 156.5, 149.7, 140.6, 138.2, 137.2, 129.8, 129.2, 129.1, 128.1, 126.7, 126.1, 123.8, 121.5, 121.4, 120.2, 118.7, 116.3, 112.8, 105.1, 82.9, 53.2, 52.2 ppm; MS: calcd. for C₂₄H₁₇ClFN₃O₃ 449.86, found 449.86.

Methyl 4-*chloro-3-[(Z)-2-cyano-2-(4-methyl-1,3-thiazol-2-yl)vinyl]-6-fluoro-2H-chromene-2-carboxylate* (9f, C₁₈H₁₂ClFN₂O₃S)

Obtained from chloroaldehyde **6** in 0.37 g (97%) yield after column chromatography (CH₂Cl₂ as the eluent) as a yellow solid. M.p.: 165–167 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.14 (s, 1H, CHC(CN)), 7.56 (s, 1H), 7.43 (dd, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, 1H), 7.33 (td, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, ³*J*_{HH} = 8 Hz, 1H), 7.18 (dd, ⁴*J*_{HF} = 4.0 Hz, ³*J*_{HH} = 8 Hz, 1H), 6.47 (s, 1H), 3.65 (s, 3H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.4, 161.0, 158.9, 156.5, 155.1, 149.9, 135.5, 133.8, 123.6, 121.6, 120.7, 118.9, 116.2, 113.0, 108.3, 82.2, 53.6, 17.3 ppm; MS: calcd. for C₁₈H₁₂ClFN₂O₃S 390.82, found 390.82.

Methyl 4-chloro-3-[(E)-2-cyano-2-(pyridin-2-yl)vinyl]-6-fluoro-2H-chromene-2-carboxylate

 $(9g, C_{19}H_{12}ClFN_2O_3)$

Obtained from chloroaldehyde **6** in 0.34 g (91%) yield after column chromatography (CH₂Cl₂ as the eluent) as a yellow solid. M.p.: 135–137 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.71$ (d, ²*J*_{HH} = 4 Hz, 1H), 8.52 (s, 1H, CHC(CN)), 8.00 (t, ²*J*_{HH} = 8 Hz, 1H), 7.79 (d, ²*J*_{HH} = 4 Hz, 1H), 7.51 (dd, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, 1H), 7.44 (dd, ²*J*_{HH} = 7.6 Hz, 1H), 7.33 (td, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 4.0 Hz, ³*J*_{HH} = 8 Hz, 1H), 6.52 (s, 1H), 3.64 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.4$, 155.8, 155.2, 153.4, 148.8, 145.9, 137.4, 134.2, 127.9, 127.4, 122.6, 120.6, 118.8, 115.7, 115.8, 115.1, 112.4, 82.2, 52.3 ppm; MS: calcd. for C₁₉H₁₂ClFN₂O₃ 370.76, found 370.76.

Methyl 4-chloro-3-[(Z)-2-cyano-2-(4,6-dimethylpyrimidin-2-yl)vinyl]-6-fluoro-2H-chromene-2-carboxylate (**9h**, C₂₀H₁₅ClFN₃O₃)

Obtained from chloroaldehyde **6** in 0.36 g (90%) yield after column chromatography (CH₂Cl₂ as the eluent) as a yellow solid. M.p.: 195–197 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.75$ (s, 1H, CHC(CN)), 7.45 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.36 (td, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, ³J_{HH} = 8 Hz, 1H), 7.31 (s, 1H), 7.20 (dd, ⁴J_{HF} = 4.0 Hz, ³J_{HH} = 8 Hz, 1H), 6.58 (s, 1H), 3.65 (s, 3H), 2.35 (s, 6H) ppm; ¹³C NMR (100 MHz, DMSO- d_6):

$$\begin{split} \delta &= 172.6,\,164.9,\,164.8,\,163.4,\,155.1,\,153.2,\,146.2,\,134.2,\\ 127.9,\,\,127.4,\,\,118.6,\,\,115.8,\,\,115.5,\,\,111.6,\,\,112.5,\,\,112.2,\\ 82.2,\,52.2,\,25.5\,\,(2C)\,\,\text{ppm;}\,\,\text{MS: calcd. for}\,\,C_{20}\text{H}_{15}\text{ClFN}_3\text{O}_3\\ 399.81,\,\,\text{found}\,\,399.81. \end{split}$$

Methyl 3-[(Z)-2-(6-bromo-3,4-dihydro-4-oxoquinazolin-2yl)-2-cyanovinyl]-4-chloro-6-fluoro-2H-chromene-2carboxylate (**9i**, C₂₂H₁₂BrClFN₃O₄)

Obtained from chloroaldehyde **6** in 0.48 g (93%) yield after recrystallization from *i*-PrOH as an orange solid. M.p.: >250 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 13.19$ (br s, 1H), 8.27 (s, 1H, CHC(CN)), 8.21 (s, 1H), 8.10 (d, ²J_{HH} = 8.8 Hz, 1H), 7.68 (d, ²J_{HH} = 8.4 Hz, 1H), 7.47 (dd, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, 1H), 7.38 (td, ³J_{HF} = 8.0 Hz, ⁴J_{HH} = 3 Hz, ³J_{HH} = 8 Hz, 1H), 7.21 (dd, ⁴J_{HF} = 4.0 Hz, ³J_{HH} = 8 Hz, 1H), 6.47 (s, 1H), 3.65 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 172.8$, 160.6, 156.8, 155.2, 153.2, 151.4, 146.1, 136.4, 134.2, 132.5, 127.9, 127.4, 124.6, 123.2, 121.8, 116.8, 115.8, 115.4, 112.5, 112.2, 82.1, 52.4 ppm; MS: calcd. for C₂₂H₁₂BrClFN₃O₄ 516.70, found 516.70.

Methyl 8-cyano-2-fluoro-6H-chromeno[3',4':5,6]pyrido[1,2-a]benzimidazole-6-carboxylate (**10**, C₂₁H₁₂FN₃O₃)

A solution of 0.4 g **9a** (1 mmol) in 5 cm³ dry DMF was refluxed for 2 h with stirring and evaporated to dryness. The residue was recrystallized from *i*-PrOH to give 0.3 g (82%) of **10** as a yellow solid. M.p.: >250 °C; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.54$ (s, 1H), 8.35 (d, ² $J_{HH} = 8$ Hz, 1H), 8.29 (dd, ³ $J_{HF} = 8.0$ Hz, ⁴ $J_{HH} = 3$ Hz, 1H), 7.91 (d, ² $J_{HH} = 8$ Hz, 1H), 7.60 (t, ² $J_{HH} = 8.4$ Hz, 1H), 7.47 (td, ³ $J_{HF} = 8.0$ Hz, ⁴ $J_{HH} = 3$ Hz, ³ $J_{HH} = 8$ Hz, 1H), 7.32 (dd, ⁴ $J_{HF} = 4.0$ Hz, ³ $J_{HH} = 8$ Hz, 1H), 6.28 (s, 1H), 3.60 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 169.9$, 162.9, 155.7, 153.0, 141.8, 139.6, 138.5, 135.2, 132.2, 123.8, 123.0, 123.1, 117.2, 116.1, 115.7, 115.2, 115.3, 116.7, 106.4, 87.2, 52.4 ppm; MS: calcd. for C₂₁H₁₂FN₃O₃ 373.34, found 373.34.

Dimethyl 8-*fluoro-4H-thieno*[3,2-*c*]*chromene-2,4dicarboxylate* (**11**, C₁₅H₁₁FO₅S)

Methyl mercaptoacetate (0.13 g, 1.2 mmol) was added to a solution of 0.27 g **6** (1 mmol) and 0.12 g potassium bicarbonate (1.2 mmol) in 10 cm³ MeOH. The reaction mixture was refluxed for 3 h and evaporated to dryness. Then, 10 cm³ H₂O were added to the residue, and the mixture was stirred for 15 min. The precipitate was filtered off, washed with H₂O (2 × 5 cm³), and dried to give 0.3 g (93%) of **11** as a white solid. M.p.: 172–174 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.67 (s, 1H), 7.25 (dd, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, ¹*H*_H, 7.11 (td, ³*J*_{HF} = 8.0 Hz, ⁴*J*_{HH} = 3 Hz, ³*J*_{HH} = 8 Hz, 1H), 7.04 (dd,

 ${}^{4}J_{\rm HF}$ = 4.0 Hz, ${}^{3}J_{\rm HH}$ = 8 Hz, 1H), 6.17 (s, 1H), 3.87 (s, 3H), 3.68 (s, 3H) ppm; 13 C NMR (100 MHz, DMSO-*d₆*): δ = 169.8, 160.6, 155.4, 152.8, 142.1, 138.7, 134.2, 132.9, 123.8, 116.8, 116.4, 116.3, 88.7, 52.4, 51.6 ppm; MS: calcd. for C₁₅H₁₁FO₅S 322.33, found 322.33.

References

- Andersen ØM, Markham KR (2006) Flavonoids: chemistry, biochemistry, and applications. CRC, Taylor & Francis, Boca Raton
- Katrizky AR, Ramsden CA, Scriven EVF, Taylor RJK (2008) Comprehensive heterocyclic chemistry III, vol 7, Six-membered rings with one heteroatom. Elsevier Science
- 3. Gonzales AM, Sochor M, McLean P (1983) Diabetes 32:482
- Lipinski CA (1988) European Patent Application 230379 (1988). Chem Abstr 108:75224

- 5. Lee H, Lee K, Jung J-K, Cho J, Theodorakis EA (2005) Bioorg Med Chem Lett 15:2745
- Sebile S, Tullio P, Becker B, Antoine M-H, Boverie S, Pirotte B, Lebrun P (2005) J Med Chem 48:614
- 7. Sekhar BC, Ramadas SR, Ramana DV (2000) Heterocycles 53:941
- Kurono MN, Yamaguchi TK, Usui TG, Fukushima MK, Mizuno KA, Matsubara AO (1988) US patent 4,740,517 (1987). Chem Abstr 106:5042
- 9. Mealy N (1996) Drugs Future 21:261
- 10. Ziegler E, Henning G, Muller AK (1973) Liebigs Ann Chem 1552
- 11. Marson CM (1992) Tetrahedron 48:3659
- 12. Files PR, Marson CM (1990) Tetrahedron Lett 31:5227
- 13. Ramados S, Krupadanam GLD (2000) Synth Commun 30:1103
- Brown PE, Marcus WY, Anastasis P (1985) J Chem Soc Perkin Trans 1:1127
- 15. Eszenyi T, Timar T (1990) Synth Commun 20:3219