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Graphical Abstract 

 

A novel benzotriazole-containing donor-acceptor-acceptor type cyclometalated 

iridium(III) complex of (CH3OTPA-BTz-Iq)2Irpic was synthesized. Using it as a 

dopant and a blend of PVK and OXD-7 as a host matrix, the PLEDs exhibited a 

near-infrared (NIR) emission peaked at 723 nm and a shoulder at 780 nm with the 

maximum EQE of 0.41% at 8.14 mA cm-2. This work indicates that introducing 

appropriate D and A unit to develop D-A-A structure is an efficient approach to 

construct near-infrared-emitting iridium(III) complex and obtain high-efficiency 

near-infrared polymer light-emitting diodes with suppressive efficiency roll-off.  
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Abstract: A novel near-infrared-emitting cyclometalated iridium(III) complex of 

(CH3OTPA-BTz-Iq)2Irpic containing benzotriazole unit with a donor-acceptor- 

acceptor (D-A-A) chromophore was synthesized and characterized. The optophysical, 

electrochemical and electroluminescent characteristics were primarily studied. A 

near-infrared emission peaked at 716 nm with a shoulder at 790 nm was exhibited in 

the (CH3OTPA-BTz-Iq)2Irpic dichloromethane solution at 298 K. In its optimized 

solution-processed polymer light-emitting diodes, a near-infrared electroluminescent 

emission peaked at 723 nm with a shoulder at 780 nm was observed with a maximum 

external quantum efficiency of 0.41% at 8.14 mA cm-2. This work indicates that 

introducing appropriate D and A units to develop D-A-A structure is an efficient 

approach to construct near-infrared-emitting iridium(III) complex in the polymer 

light-emitting diodes with suppressive efficiency roll-off.  

 

Keywords: donor-acceptor-acceptor; iridium(III) complexes; benzotriazole;  

near-infrared emission; electrophosphorescence; polymer light-emitting devices 
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1. Introduction 

With the rapid development of organic light-emitting diodes (OLEDs) in recent 

years, the research on near-infrared (NIR)-OLEDs has gained great attentions for 

diverse potential applications in night-vision-readable displays, sensors, optical com- 

munication and medical systems [1-5]. To date, the developed organic NIR-emitting 

materials mostly contain lanthanide complexes [6-8], fluorescent materials with a 

donor-acceptor (D-A) structure [9-14], boron dipyrromethene dyes [15-20] and 

transition-metal complexes [21-34]. Therein, phosphorescent transition-metal com- 

plexes using osmium(II), iridium(III) or platinum(II) as the metal center are available 

to exhibit higher emission efficiency due to their strong spin-orbit coupling in the 

presence of heavy metal atoms, which leads to an internal quantum efficiency as high 

as 100% [35,36]. For example, in a device with a sophisticated configuration, the 

platinum(II) complex of PtL2Cl realized a maximum external quantum efficiency 

(EQEmax) of 14.5% at ~700 nm̍ which is the highest value for these NIR devices to 

date [22]. However, these EQE levels were typically obtained from excimers emission, 

the performance and the reproducibility of the devices cannot be well controlled [37]. 

Platinum (II) porphyrins are also the most typical NIR emission materials in the 

reported transition metal complexes and have exhibited an EQE maxima of 2.49% for 

polymer light-emitting devices (PLEDs) and 9.2% for OLEDs with NIR emission in 

the 760-780 nm range. However, these EQE levels were typically obtained at very 

low current densities. In high current densities, the devices exhibit a significant EQE 

roll-off, which could be attributed to the increasing triplet-triplet exciton annihilation 

and aggravated by long excited-state lifetimes in the planar-square platinum(II) 

phosphors [25].  

In contrast to the planar-square platinum (II) complexes, iridium (III) complexes 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 4

with typical octahedral configuration, relatively short triplet lifetime and high phos- 

phorescent efficiency have the ability to effectively prevent intermolecular aggre- 

gation-induced emission (AIE) quenching and significantly alleviate the efficiency 

roll-off in OLEDs [29]. In order to develop new NIR-emitting iridium (III) complex- 

es, many researchers have made some contributions to this field. The earlier NIR- 

emitting example of iridium (III) bis(1-pyrenyl-isoquinoinato-N,C’) acetylacetonate 

was reported by Williams et al. in 2006, which displayed an electroluminescence (EL) 

emission peaked at 720 nm with an EQEmax nearly 0.1% [20]. Recently, Qiu et al. 

reported a series of the NIR-emitting iridium (III) phosphors [27-29], in which an 

iridium (III) emitter of Ir(pbq-g)2(Bphen) exhibited an extended emission peak at 850 

nm by introducing an sp2-hybridized N atom opposite the chelating N atom in the 

phenylbenzoquinoline (pbq) ligand [28]. The Ir(pbq-g)2(Bphen) based devices 

achieved a maximum EQE up to 2.2% with negligible efficiency roll-off. In 2015, an 

iridium(III) phosphor of (thdpqx)2Ir(acac) (dpqx= diphenylquinoxaline, th=thienyl) 

was reported and exhibited an EL emission peak at 704 nm in its doped devices with 

an EQEmax of 3.4% [31], which is the highest value for the NIR-emitting devices 

based on cyclometalated iridium (III) complexes to date.   

It's worth noting that some NIR-emitting organic and polymeric fluorescent mate- 

rials with D-A chromophores have been developed because the band gap levels and 

photoelectronic properties can be readily tuned through a systematic variation be- 

tween the D and A units [9-14]. According to this idea, introduction of the D-A 

structure into phosphorescent materials should be expected to achieve NIR emission  

with better device performance. In 2013, Wong et al reported a series of cyclometa- 

lated iridium (III) complexes with functionalized borylated oligothiophene ligands 

and their maximum emission peaks extended to 756 nm. However, the EQE maximum 
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is merely 0.07% as the strong D-A interaction triggered a much faster radiationless 

decay, and the EL spectrum exhibited a dual emission, which indicates that the energy 

transfer from the host exciton to the phosphor is not completely [30]. The similar 

phenomenon was also occurred in our previous research. In 2014, our group reported 

a D-A-A type cyclometalated platinum (II) complex (TPA-BT-Q)Ptpic with a 

functionalized cyclometalated ligand of triphenylamine (TPA)-benzothiadia- zole 

(BT)-quinoline (Q). The devices exhibited a maximum emission peak at 760 nm, and 

the EQEmax is only 0.12% [38]. Therefore, selecting the appropriate D and A units is 

the main subject. 

Inspired by the works mentioned above, we here designed a novel benzotriazole- 

containing D-A-A type cyclometalated iridium (III) complex of (CH3OTPA-BTz-Iq)2 

–Irpic, in which methoxy-triphenylamine (CH3OTPA) is used as an electron-donating 

unit, an alkylbenzotriazole (BTz) and an isoquinoline (Iq) are employed as electron- 

withdrawing units and the alky group is introduced in order to improve molecular 

solubility (Figure 1). In this complex, non-planar CH3OTPA unit is available to 

improve carrier-transporting properties and overcome the aggregation-induced emi- 

ssion quenching; the BTz unit is an acceptor with moderate electron-withdrawing 

intensity (compared with the benzothiadiazole) due to the substitution of the sulfur 

atom in benzothiadiazole with a nitrogen atom, which may reduce the intensity of 

D-A interaction and suppress the nonradiative transition to some extent [39]. Besides, 

BTz is a good class of EL materials reported in recent years [40-43], the lone pair on 

the nitrogen atom is more basic than the lone pair on sulfur and is more easily donated 

into the triazole ring [39]. This is also contributed to form a more stable complex. The 

synthetic route of (CH3OTPA-BTz-Iq)2Irpic is shown in Scheme 1. To prove our 

tactics, we comprehensively studied its thermal, photophysical, and electrochemical 
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properties, further EL properties of its doped PLEDs by a solution process. In the 

optimized solution-processed phosphorescent PLEDs, a NIR EL emission peaked at 

723 nm with a shoulder at 780 nm was observed. An EQE maximum of 0.41% at 8.14 

mA cm-2 was obtained in the (CH3OTPA-BTz-Iq)2Irpic doped devices. This work 

indicates that introducing appropriate D and A units to develop D-A-A structure is an 

efficient approach to construct high-efficiency NIR-emitting iridium (III) complex  

in PLEDs with suppressive efficiency roll-off. 

2 Expermental 

2.1 Characterization   

The solvents were carefully dried and distilled by standard procedures before use. 

All chemicals, unless otherwise stated, were obtained from commercial sources and 

used as received. 1H NMR spectra was recorded with a Bruker Dex-400 NMR 

instrument using CDCl3 as a solvent. Elemental analysis was carried out with a vario 

EL III elemental analysis instrument. Mass spectrum was recorded on a Bruker auto- 

flexIII smartbeam MALDI-TOF spectrometer. Ultraviolet-visible (UV-vis) absorp- 

tion and photoluminescent (PL) spectra at 298 K were recorded with a PE Lambda 25 

spectrophotometer and a PTI Q40 luminescence spectrometer, respectively. PL 

spectra at 77 K were recorded with Edinburgh analytical instrument (FLS920 fluores- 

cence spectrometer). Lifetime studies both at 77 K and 298 K were performed by an 

Edinburgh FLS920 transient spectrofluorimeter with time-correlated single-photon 

counting technique at the peak PL wavelength. The equation of Φs = Φr(ɳs
2ArIs/ɳr

2AsIr) 

was used to calculate the fluorescence quantum yield (Φ) of the iridium(III) complex 

using complex Ru(bpy)3(PF6)2 as the standard compound in N2 atmosphere, where Φs 

is the quantum yield of the sample, Φr is the quantum yield of the reference, ɳ is the 
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refractive index of the solvent, As and Ar are the absorbance of the sample and the 

reference at the wavelength of excitation, Is and Ir are the integrated areas of emission 

bands [44]. Thermogravimetric analysis (TGA) was conducted under a dry nitrogen 

gas flow at a heating rate of 20°C min-1 on a TA TQAQ50 instrument. Cyclic volta- 

mmetry was performed on a CHI 600E electrochemical work station with a scan rate 

of 100 mV S-1 at room temperature under argon, in which a Pt disk, Pt plate and 

Ag/AgCl electrode were used as working electrode, counter electrode and reference 

electrode in n-Bu4NPF6 (0.1 M) acetonitrile solution, respectively. For calibration, the 

redox potential of ferrocene/ferrocenium (Fc/Fc+) was measured under the same 

conditions. 

2.2 PLEDs Fabrication and Measurement 

Patterned indium tin oxide (ITO)-coated glass substrates with a sheet resistance of 

15-20 Ω square-1 underwent a wet-cleaning course in an ultrasonic bath, beginning 

with THF, following by isopropanol, detergent, deionized water and isopropanol, res- 

pectively After oxygen-plasma treatment, a 40 nm thick anode hole-injection layer of 

poly(ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS, Baytron P 4083, 

Bayer AG) film was spin-cast on the ITO substrate and dried by baking in vacuum 

oven at 120 oC for 20 min. The 80 nm emitting layer was prepared by spin-coating 

from chlorobenzene solution on the top of PEDOT:PSS layer, then annealed at 120 oC 

for 20 min to remove the solvent residue. Finally, an electron transfer layer of TPBI 

(30 nm), a cathode composed of Ba (4 nm) and Al (100 nm) layer was evaporated 

with a shadow mask at a base pressure of 1 × 10-4 Pa. The thickness of the evaporated 

cathode was monitored by a quartz crystal thickness /ratio monitor (Model: 

STM-100/MF, Sycon). The overlapping area between the cathode and anode defined a 

pixel size of 15 mm2. Except for the spin coating of the PEDOT:PSS layer, all the 
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fabrication processes were carried out inside a controlled atmosphere of nitrogen 

dry-box (Vacuum Atmosphere Co.) containing less than 1 ppm oxygen and moisture. 

All measurements were carried out at room temperature (RT) under ambient 

conditions. The J-V characteristics were measured using a Keithley 236 source 

measurement unit and a calibrated silicon photodiode. Radiant emittance values were 

calculated assuming a Lambertian distribution accordingly. The external quantum 

efficiency values were calculated from the current density, luminance and EL 

spectrum, assuming a Lambertian distribution. The EL spectra were obtained by using 

miniature fiber optic spectrometer (USB 2000, Ocean Optics). 

2.3 Syntheses 

2.3.1 Synthesis of N-(4-bromophenyl)-4-methoxy-N-(4-methoxyphenyl)benzenamine 

(1) 

A mixture of 1-iodo-4-methoxybenzene (10.00 g, 42.74 mmol), 4-bromobenzen- 

amine (2.95 g, 17.15 mmol) and 1,10-phenanthroline anhydrous (0.62 g, 3.42 mmol) 

in toluene (60 mL) was heated and stirred under nitrogen atmosphere. When the 

temperature reached to 110 oC, the CuI (0.65 g, 3.42 mmol) and KOH (7.66 g, 136.79 

mmol) were added quickly, and then the mixture was stirred at 135 oC for 12 h. After 

cooled to RT, the mixture was poured into distilled water (50 mL) and extracted with 

dichloromethane (DCM) (3×30 mL). The combined organic layer was dried over 

MgSO4 for 2 h and filtrated. The filtrate was concentrated by rotary evaporator under 

reduced pressure. The residue was purified by silica gel column chromatography 

using DCM/ petroleum ether (PE) (1/5, V/V) as eluent to gain lyard powder (4.63 g, 

70.4%).1H NMR (400 MHz, CDCl3, ppm): 7.25 (d, J = 4.0 Hz, 2H), 7.04 (d, J = 8.4 

Hz, 4H), 6.83 (d, J = 8.2 Hz, 6H), 3.79 (s, 6H). 

2.3.2 Synthesis of 4-methoxy-N-(4-methoxyphenyl)-N-(4-(4,4,5,5-tetramethyl-1,3,2- 

dioxaborolan-2-yl)phenyl)benzenamine (2) 
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A mixture of compound 1 (2.03 g, 5.28 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5- 

tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.34 g, 21.12 mmol), pota- 

ssium acetate (2.58 g, 26.38 mmol) and [1,1′-bis(diphenylphosphino)ferrocene]di- 

chloropalladium (II) (0.12 g, 0.16 mmol) in DMSO (65 mL) was heated and stirred at 

80 oC under nitrogen atmosphere for 20 h. After cooled to RT, the mixture was poured 

into distilled water (50 mL) and extracted with DCM (3×30 mL). The combined 

organic layer was washed with distilled water (4×40 mL) and dried over MgSO4 for 2 

h and filtrated. The filtrate was concentrated by rotary evaporator under reduced 

pressure. The residue was purified by silica gel column chromatography using 

DCM/PE (1/1, V/V) as eluent to gain lyard powder (1.40 g, 61.5%).1H NMR (400 

MHz, CDCl3, ppm): 7.60 (d, J = 7.0 Hz, 2H), 7.07 (d, J = 6.0 Hz, 4H), 6.84 (d, J = 8.0 

Hz, 6H), 3.79 (s, 6H), 1.32 (s, 12H). 

2.3.3 Synthesis of N-(4-(7-bromo-2-octyl-2H-benzo[d][1,2,3]triazol-4-yl)phenyl)-4- 

methoxy-N-(4-methoxyphenyl)benzenamine (3) 

A mixture of compound 2 (1.00 g, 2.32 mmol), 4,7-dibromo-2-octyl-2H-benzo 

[d][1,2,3]triazole (1.17 g, 3.14 mmol), Na2CO3 (6 mL, 2M), Pd(PPh3)4 (80 mg, 0.07 

mmol) in toluene (25 mL) and methanol (6 mL) was heated and stirred at 80 oC under 

nitrogen atmosphere for 12 h. After cooled to RT, the mixture was poured into 

distilled water (50 mL) and extracted with DCM (3×30 mL). The combined organic 

layer was dried over MgSO4 for 2 h and filtrated. The filtrate was concentrated with 

rotary evaporator under reduced pressure. The residue was purified by silica gel 

column chromatography using DCM/PE (1/2, V/V) as eluent to gain light yellow 

powder (0.78 g, 55.6%). 1H NMR (400 MHz, CDCl3, ppm): 7.86 (d, J = 8.6 Hz, 2H), 

7.60 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 8.8 Hz, 4H), 7.04 (d, J 

= 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 4H), 4.78 (t, J = 7.2 Hz, 2H), 3.81 (s, 6H), 
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2.16-2.12 (m, 2H), 1.36-1.25 (br, 10H), 0.87 (t, J = 6.4 Hz, 3H). MALDI-TOF MS 

(m/z) for C34H37BrN4O2, Calcd: 612.210, Found, 612.232. 

2.3.4 Synthesis of 4-methoxy-N-(4-methoxyphenyl)-N-(4-(2-octyl-7-(4,4,5,5-tetrame- 

thyl-1,3,2-dioxaborolan-2-yl)-2H-benzo[d][1,2,3]triazol-4-yl)phenyl)benzenamine (4) 

A mixture of compound 3 (0.26 g, 0.43 mmol), 4,4,5,5-tetramethyl-2-(4,4,5,5- 

tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane(0.42g, 1.68mol), potassium 

acetate (0.33 g, 3.36 mmol) and [1,1′-bis(diphenylphosphino) ferrocene] dichloro- 

palladium (II) (52 mg, 0.07 mmol) in anhydrous tetrahydrofuran (50 mL) was heated 

and stirred at 65 oC under nitrogen atmosphere for 12 h. After cooled to RT, the 

mixture was poured into distilled water (50 mL) and extracted with DCM (3×30 mL). 

The combined organic layer was dried over MgSO4 for 2 h and filtrated. The filtrate 

was concentrated by rotary evaporator under reduced pressure. The residue was 

purified by silica gel column chromatography using DCM/PE (1/1, V/V) as eluent to 

gain yellow viscous compound (0.21 g, 73.5%).1H NMR (400 MHz, CDCl3, ppm): 

7.95-7.93 (m, 3H), 7.51 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 8.8 Hz, 4H), 7.04 (d, J = 8.8 

Hz, 2H), 6.86 (d, J = 8.8 Hz, 4H), 4.78 (t, J = 7.6 Hz, 2H), 3.81 (s, 6H), 2.16-2.12 (m, 

2H), 1.42-1.40 (br, 10H), 1.26 (s, 12H), 0.88 (t, J = 4.2 Hz, 3H). MALDI-TOF MS 

(m/z) for C40H49BN4O4, Calcd: 660.385, Found, 660.392. 

2.3.5 Synthesis of the CH3OTPA-BTz-BT-Iq ligand 

A mixture of compound 4 (0.15 g, 0.23 mmol), 1-bromoisoquinoline (52 mg, 0.25 

mmol), K2CO3 (2 mL, 2M), Pd(PPh3)4 (7 mg, 0.01 mmol) in toluene (18 mL) and 

methanol (2 mL) was heated and stirred at 80 oC under nitrogen atmosphere for 24 h. 

After cooled to RT, the mixture was poured into distilled water (15 mL) and extracted 

with DCM (3×15 mL). The combined organic layer was dried over MgSO4 for 2 h and 

filtrated. The filtrate was concentrated by rotary evaporator under reduced pressure. 
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The residue was purified by silica gel column chromatography using DCM as eluent 

to gain yellow solid (0.13 g, 86.5%). 1H NMR (400 MHz, CDCl3, ppm): 8.71 (d, J = 

5.6 Hz, 1H), 7.99-7.91 (m, 4H), 7.74-7.66 (m, 4H), 7.50 (t, J = 3.0 Hz, 1H), 7.17 (d, J 

= 8.4 Hz, 4H), 7.09 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 8.4 Hz, 4H), 4.71 (t, J = 7.0 Hz, 

2H), 3.82 (s, 6H), 2.06-2.02 (m, 2H), 1.31-1.22 (br, 10H), 0.84 (t, J = 3.8 Hz, 3H). 

MALDI-TOF MS (m/z) for C43H43N5O2, Calcd: 661.342, Found, 661.465. 

2.3.6 Synthesis of (CH3OTPA-BTz-Iq)2Irpic  

A mixture of IrCl3·H2O (30 mg, 0.09 mmol), CH3OTPA-BTz-Iq (150 mg, 0.23 

mmol), 2-ethoxyethanol 12 mL and distilled water 4 mL was stirred under nitrogen 

atmosphere at 100 oC for 24 h. After cooled to RT, the mixture was poured into 

distilled water (15 mL) and extracted with DCM (3×15 mL). The combined organic 

layer was dried over Na2SO4 for 4 h and filtrated. The filtrate was concentrated with 

rotary evaporator under reduced pressure to gain the violet chloro-bridged precursor.  

The dried chloro-bridged precursor (139 mg, 0.045 mmol) was mixed with 

2-ethoxyethanol (15 mL), picolinic acid (44 mg, 0.36 mmol) and anhydrous Na2CO3 

(30 mg, 0.28 mmol). The resulting mixture was stirred under nitrogen atmosphere at 

110 oC for 24 h. After cooling to RT, the resulting precipitate was filtered off and 

washed with water, ethanol and hexane, respectively. The residue was purified by 

silica gel column chromatography using DCM/ethyl acetate (EA) (V/V=3/1) as eluent 

to get an orange powder (31 mg, 41.7 %). 1H NMR (400 MHz, CDCl3, ppm): 9.76 (d, 

J = 8.0 Hz, 1H), 9.59 (d, J = 8.0 Hz, 1H), 8.78 (d, J = 6.4 Hz, 1H), 8.34 (d, J = 7.6 Hz, 

1H), 7.88-7.80 (m, 4H), 7.68-7.63 (m, 6H), 7.55 (d, J = 6.4 Hz, 1H), 7.45-7.39 (m, 

4H), 7.31 (d, J = 7.8 Hz, 2H)̍ 7.23 (d, J = 6.6 Hz, 1H), 7.03-7.00 (m, 8H)̍6.83 (d, J 

= 7.4 Hz, 8H), 6.74 (d, J = 9.4 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 6.35 (s, 1H), 4.64 (t, 

J = 5.6 Hz, 4H), 3.80 (s, 12H), 2.14-2.05 (m, 4H), 1.43-1.26 (br, 20H), 0.84 (t, J = 5.6 
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Hz, 6H). MALDI-TOF MS (m/z) for C92H88IrN11O6, Calcd: 1635.655, Found, 

1635.803. Anal. Calc. for C92H88IrN11O6: C 67.54, H 5.42, N 9.42% Found: C 67.21, 

H 5.34, N 9.27% 

3. Results and Discussion 

3.1 Synthesis and thermal stability 

Compound 3 and CH3OTPA-BTz-Iq were synthesized through Suzuki couplings. 

The (CH3OTPA-BTz-Iq)2Irpic was synthesized using the previous method with 

two-step procedures, which contain a cyclometalation of CH3OTPA-BTz-Iq and a 

cleavage of the chloride groups in the corresponding dimers with picolinic acid. The 

(CH3OTPA-BTz-Iq)2Irpic was characterized by 1H NMR, MALDI-TOF mass spectra 

and element analysis. 

Thermal property of (CH3OTPA-BTz-Iq)2Irpic was characterized by TGA. The 

recorded TGA curve is shown in Figure S1 (see Electronic Supporting Information, 

ESI). The onset decomposition temperature for 5 % weight loss (Td) was 302 °C, 

which indicates the (CH3OTPA-BTz-Iq)2Irpic has high thermal stability.  

3.2 Photophysical Properties 

The photophysical properties of (CH3OTPA-BTz-Iq)2Irpic in DCM solution were 

investigated at 298 K (Table 1). Figure 2 shows the UV-vis spectrum of (CH3OTPA- 

BTz-Iq)2Irpic. For comparison, the UV-vis spectrum of the CH3OTPA-BTz-Iq ligand 

in DCM is also displayed in Figure 2. Three typical absorption peaks at 304 nm, 465 

nm and 535 nm were observed for (CH3OTPA-BTz-Iq)2Irpic. The intense high-lying 

absorption peak is ascribed to the spin-allowed ligand-central (LC) π-π* transitions, 

the low-lying peak with a shoulder in the region of 400-600 nm can be ascribe to a 

mixture of 1MLCT, 3MLCT and intramolecular charge transfer (ICT) transitions [45]. 
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The low-energy absorption band cannot be distinctly resolved mainly owing to the 

hiding of these transitions inside the UV region of the strong singlet transition, which 

are of much lower but non-negligible absorptivity [30]. Compared to the CH3OTPA- 

BTz-Iq free ligand, (CH3OTPA-BTz-Iq)2Irpic exhibited a significantly red-shift low- 

lying absorption peak, which implies that (CH3OTPA-BTz-Iq)2Irpic with D-A-A archi 

-tecture has a more intense ICT effect than the CH3OTPA-BTz-Iq free ligand due to 

incorporation of the substituent iridium(III) complex acceptor unit [38].  

The PL spectra of (CH3OTPA-BTz-Iq)2Irpic in degassed DCM (10-6 M) at 77 K 

and 298 K are displayed in Figure 3. As a reference, CH3OTPA-BTz-Iq in dilute 

DCM at 298 K is also shown in Figure 3. The corresponding data are summarized in 

Table 1. At 298 K, under photo-excitation at 460 nm, (CH3OTPA-BTz-Iq)2Irpic 

exhibits a NIR emission with a strong peak at about 716 nm and a shoulder around 

790 nm. At 77 K, the complex displays an additional emission peak at 580 nm, 

although the strong emission peak and shoulder are very similar to the spectrum at 

298 K. In order to further explain the species of the different emission peaks in the 

spectrum, we measured the lifetimes (τ) at 298 K and 77 K in degassed DCM by using 

the single-photon counting method. The decay profiles of (CH3OTPA-BTz-Iq)2Irpic at 

77 K and 298 K at different emission peaks are shown in Figure S2 (see ESI). At 77 K, 

(CH3OTPA-BTz-Iq)2Irpic exhibits a much longer emission lifetime of 12.86 µs at the 

peak of 580 nm, which can be ascribe to the ligand triplet-triplet emission. Mean- 

while, a strong low-temperature phosphorescence band at 708 and a shoulder around 

783 nm are observed, which shows a little blue shift to the spectrum at 298 K due to 

the prohibition of the thermal activations [49]. Using Ru(bpy)3(PF6)2 as the standard 

compound, (CH3OTPA-BTz- Iq)2Irpic shows a fluorescence quantum yield of 0.3% in 

degassed DCM . 
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  Compared to the iridium (III) complex Ir(tpaiq)2(acac) (tpa = triphenylamine, iq = 

isoquinoline, acac = acetoacetone) reported previously by our group [46], the PL 

spectrum of (CH3OTPA-BTz-Iq)2Irpic presents 80 nm red shift because of an 

additional A unit (benzotriazole). This indicates that the intramolecular D-A effect is 

available to make the iridium (III) complexes exhibit red-shifted PL spectra.   

3.3 Electrochemical Properties 

The redox properties of (CH3OTPA-BTz-Iq)2Irpic were characterized by cyclic 

voltammetry (CV) method using ferrocene as an internal standard. The recorded 

voltammograms are shown in Figure S3 and the resulting CV data are summarized in 

Table 1. An quasi-reversible oxidation wave (Eox) at 0.75 eV and an quasi-reversible 

reduction wave (Ered) at -0.82 eV are observed. According to the reported literature, 

the oxidation potential is strongly dependent on the electronic environment of the 

iridium(III) core [47]. On the basis of Eox and Ered values, the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

energy levels (EHOMO and ELUMO) of (CH3OTPA-BTz-Iq)2Irpic are calculated to be 

-5.08 and -3.5 eV based on the empirical formula, respectively [48]. As the LUMO 

and HOMO energy levels are -2.20 eV/-5.80 eV for PVK and -2.80 eV/-6.50 eV for 

OXD-7, (CH3OTPA -BTz-Iq)2Irpic exhibits a matched energy level with the PVK and 

OXD-7 blend, which is available for (CH3OTPA-BTz-Iq)2Irpic to play a carrier trap 

role in the PVK-OXD-7-hosted PLEDs. In order to conveniently analyze the energy 

transfer of the guest and host in the PLEDs, the HOMO-LUMO energy levels of all 

materials used and the device configuration are shown in Figure 4. 

3.5 Electroluminescence Properties 

To investigate the applicability of this new emitter in EL devices, a series of 

spin-coated PLEDs were fabricated with a single-active layer configuration: ITO/ 
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PEDOT:PSS (40 nm)/ PVK:OXD-7 (70:30): x wt% (CH3OTPA- BTz-Iq)2Irpic (x =3, 

5, 9) (80 nm)/ Ba (4 nm)/ Al (100 nm) (Device I) and a multi-active layer configu- 

ration: ITO/ PEDOT:PSS (40 nm)/ PVK:OXD-7 (70:30): x wt% (CH3OTPA-BTz- 

Iq)2Irpic (x = 9, 12, 14, 16) (80 nm)/ TPBI (1,3,5-tri(1-phenyl-1H-benzo[d]- 

imidazol-2-yl)phenyl) (30 nm)/ Ba (4 nm)/ Al (100 nm) (Device II), in which PEDOT 

was employed as hole-injecting layer (HIL), PVK mixed with OXD-7 was acted as 

host material because of the PVK has excellent film-forming properties and high 

hole-transport ability, TPBI was used as the electron-transporting/exciton-blocking 

layer, and Ba was used as electron-injecting layer (EIL). The doping concentrations in 

emitting layer were optimized to investigate the device performance. For convenience, 

devices based on a single-active layer and a multi-active layer are described as I and 

II, respectively. 

Figure 5 shows the EL spectra of the (CH3OTPA-BTz-Iq)2Irpic-doped Device I and 

II at different dopant concentrations. The detailed data are summarized in Table 2. In 

Device I, at low doping concentration of 3.0 wt%, two distinct EL peaks at about 440 

nm and 720 nm with a shoulder peak at about 780 nm were observed, which are 

assigned to the PVK:OXD-7(70:30) and (CH3OTPA-BTz-Iq)2Irpic emissions, respec- 

tively. The EL peak of PVK/OXD-7(70:30) is shown in Figure S4. With further 

increasing dopant concentrations, the PVK:OXD-7 emission was almost quenched 

and only strong NIR emission from (CH3OTPA-BTz-Iq)2Irpic was observed in both 

Device I and II. This implies that the energy was transferred efficiently from PVK: 

OXD-7 to (CH3OTPA-BTz-Iq)2Irpic. More importantly, we found that the platinum 

(II) complexes of (TPA-BT-Q)Ptpic and (CH3OTPA-BTz-Iq)Ptpic, which have the 

analogous D-A-A structure, displayed a broad, dual EL emission including a strong 

visible emission (derived from the (TPA-BT-Q) and (CH3OTPA-BTz-Iq) ligand 
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center) and NIR emission simultaneously, especially at low dopant concentrations. 

However, the (CH3OTPA-BTz-Iq)2Irpic shows no emission of ligand center because 

the spin-orbit coupling (SOC) strength of iridium(III) complexes are much stronger 

than that of platinum(II) complexes. (The EL spectra of the three complexes are 

shown in Figure S5 and Figure S6).    

The EQE versus current density characteristic of the Device I and II are shown in 

Figure 6. The corresponding device performance data are summarized in Table 2. In 

Device I, the maximum EQE of 0.20% is observed at the dopant concentrations of 9.0 

wt%. Apparently, the EQEs tend to decrease firstly and then increase with the 

increasing dopant ratios in Device I. In Device II, with the use of TPBI, the efficiency 

enhances significantly because a broader recombination region within the emitting 

layer is better for carrier balance. The maximum EQE of 0.41% at current density of 

8.14 mA cm-2 is observed at the dopant concentrations of 12.0 wt%. Furthermore, the 

EQE levels display a small roll-off at high current densities. This sluggish efficiency 

roll-off is favorable for practical applications of OLEDs/PLEDs [49]. Moreover, aside 

from the octahedral configuration of iridium (III) complexes, the introduction of 

bulky nonplanar TPA unit into (CH3OTPA-BTz-Iq)2Irpic can also effectively reduce 

the chances of π-stacking of dopants [38].    

The current densities (J)-voltage (V)-radiance (R) characteristics of the (CH3OTPA- 

BTz-Iq)2Irpic doped Device I and II are shown in Figure 7 and their corresponding 

data are summarized in Table 2. Device II acquired a preferable performance with a 

radiant emittance of 74.1 µW cm-2 at 23.2 mA cm-2 and 12.0 wt% doping 

concentrations.  

4. Conclusions 
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In summary, a novel benzotriazole-containing D-A-A type cyclometalated iridium 

(III) complex of (CH3OTPA-BTz-Iq)2Irpic was obtained with a NIR-EL emission 

peak at 723 nm and a shoulder at 780 nm. Its NIR-emitting PLEDs showed a 

suppressed efficiency roll-off with increasing operating current densities. The best 

device performances were presented in the device at 12.0 wt% dopant concentration 

in Decive II. The maximum EQE of 0.41% at 8.14 mA cm-2 and an irradiance 

intensity of 74.1 µW cm-2 at 23.2 V were observed. This work indicates that 

introducing appropriate D and A unit to develop D-A-A structure is an efficient 

approach to construct high-efficiency NIR-emitting iridium (III) complex in PLEDs 

with insignificant efficiency roll-off. 
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Captions of Figures 

Figure 1 Molecular structure of (CH3OTPA-BTz-Iq)2Irpic 

Scheme 1 Synthetic route of (CH3OTPA-BTz-Iq)2Irpic 

Figure 2 Normalized UV-vis absorption spectra of CH3OTPA-BTz-Iq ligand and 

(CH3OTPA-BTz-Iq)2Irpic in DCM at 298 K 

Figure 3 Normalized PL spectra of CH3OTPA-BTz-Iq ligand in deaerated DCM at 

298 K and (CH3OTPA-BTz-Iq)2Irpic in deaerated DCM at 298 K and 77 K 

Figure 4 Energy level diagram and device structure of the (CH3OTPA-BTz-Iq)2Irpic 

-doped PLEDs 

Figure 5 EL spectra of the (CH3OTPA-BTz-Iq)2Irpic-doped PLEDs. (a) EL spectra in 

Device I at dopant concentrations from 3 wt % to 9 wt%; (b) EL spectra in Device II 

at dopant concentrations from 9 wt% to 16 wt%. 

Figure 6 The EQE versus current density characteristics of Device I (a) and Device II 

(b). 

Figure 7 The current density-voltage-radiance (J-V-R) curves of the (CH3OTPA-BTz- 

Iq)2Irpic-doped devices at different concentrations: (a) from 3 wt% to 9 wt% in 

Device I; (b) from 9 wt% to 16 wt% in Device II. 

Table 1 Photophysical and electrochemical properties of (CH3OTPA-BTz-Iq)2Irpic 

Table 2 The EL parameters of the (CH3OTPA-BTz-Iq)2Irpic-doped PLEDs 
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Figure 5 
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Figure 7 
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Table 1 

UV-vis λ/nma 

(εmax/L mol-1cm-1)b 

PL λ/nm (τ /µs)a 

77 K           298 K 
ET/eVc 

EHOMO 

/eVd
 

ELUMO 

/eVd 

Eg 

/eV 

304(153389), 

465(129269), 

535(56174) 

580(12.86),       718(0.48), 

708(2.80),        790(0.47)       

783(2.54)                  

 

1.75 -5.08 -3.50 1.58 

a Measured in DCM at 298 K at a concentration of 10-6 mol L-1.  

b Molar extinction coefficient at 298 K.  

c Triplet energy was deduced from the highest peak of phosphorescent. 

dEHOMO = -(4.33 + Eox ) eV, ELUMO = -(4.33 + Ered ) eV 

 

Table 2 

dopant ratio 

(wt%)  

device 

type  
λEL (nm)a  EQEmax (%)b  J(mA cm-2)c  

Rmax(µW cm-2)  

[V at Rmax(V)] 

3 I 440, 719, 780(sh) 0.18 1.92 48.6 (13.6) 

5 I 719, 780(sh) 0.14 3.17 42.2 (14.3) 

9 I 719, 780(sh) 0.20 1.16 59.5 (16.1) 

9 

12 

14 

16 

II 

II 

II 

II 

723, 780(sh) 

723, 780(sh) 

723, 780(sh) 

723, 780(sh) 

0.31 

0.41 

0.32 

0.27 

7.16 

8.14 

7.79 

7.81 

49.2 (20.9) 

74.1 (23.2) 

43.5 (23.8) 

not measured 

sh=shoulder 

a λEL: the maximum EL emission peak  

b EQEmax: the maximum external quantum efficiency 

c current density at EQEmax  
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Figure S1. TGA curve of (CH3OTPA-BTz-Iq)2Irpic under a stream of nitrogen at a 

scanning rate of 20 °C min-1 

Figure S2. Decay profile of (CH3OTPA-BTz-Iq)2Irpic at 77 K and 298 K at different 

emission peak. 

Figure S3. Cyclic voltammogram of the (CH3OTPA-BTz-Iq)2Irpic .  

Figure S4. The EL spectra of the host material PVK:OXD-7(70:30) 

Figure S5. The EL spectra of the (CH3OTPA-BTz-Iq)Ptpic-doped PLEDs at dopant 

concentrations from 1 wt % to 9 wt%. 

Figure S6. The EL spectra of the (CH3OTPA-BTz-Iq)2Irpic- and (TPA-BT-Q)Ptpic- 

doped PLEDs at 8 wt% and 9 wt% doping concentrations, respectively. 

Figure S7. 1H NMR and MALDI-TOF mass spectra of CH3OTPA-BTz-Iq and 

(CH3OTPA-BTz-Iq)2Irpic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 34

Figure S1 
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Figure S2 
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Figure S3 

 

 
Figure S4 
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Figure S5  

 

Figure S6 

 
 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 38

Figure S7 
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Highlights 

� A novel iridium(III) complex of (CH3OTPA-BTz-Iq)2Irpic with a D-A-A structure 

was synthesized.  

� The (CH3OTPA-BTz-Iq)2Irpic shows an emission at 718 nm and a shoulder at 790 

nm in solution at 298 K. 

� The (CH3OTPA-BTz-Iq)2Irpic-doped PLEDs exhibited a near-infrared EL emission 

peaked at 723 nm. 

� The maximum EQE of 0.41% and a radiant intensity of 74.1 µW cm-2 were obtained 

in their doped PLEDs. 

 

 


