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Abstract: (S)-1-Amino-2,3-propanediol and (2S,3S)-2-amino-1,3-
butanediol have been used as two different acyclic substitutes for 2¢-
deoxyriboside in order to synthetically incorporate the phenanthri-
dinium chromophore of ethidium as an artificial DNA base. The
comparison of the optical properties of one representative duplex
bearing phenanthridinium attached to the two alternative acyclic
linkers does not exhibit significant differences.

Key words: DNA, ethidium, fluorescence, oligonucleotide,
phenanthridinium

3,8-Diamino-5-ethyl-6-phenylphenanthridinium bro-
mide (‘ethidium bromide’) represents a commonly used
fluorescent stain for nucleic acids.1 Bisfunctional inter-
calators based on ethidium enhance the fluorescence in-
crease upon DNA hybridization.2 Moreover, the ethidium
chromophore represents an interesting photoinducable
charge donor if the fluorescence is quenched due to DNA-
mediated charge transfer processes.3–7 Since a detailed
photophysics of the binding interactions, the fluorescence
and electronic properties of the ethidium intercalation in
DNA remain poorly understood,8 we worked out a DNA
phosphoramidite building-block protocol for the site-spe-
cific incorporation of the phenanthridinium chromophore
of ethidium bromide as an artificial nucleobase into
DNA.9 Using such modified duplexes we were able to
study emission and charge transfer in DNA6 and to detect
DNA base mismatches in a homogenous fluorescent
assay.7

Due to the significant hydrolytic lability in aqueous basic
solutions (that are typically used for DNA workup) of the
ethidium nucleoside,10 the 2¢-deoxyribofuranoside moiety
was replaced initially with (S)-2-amino-1,3-propanediol
as an acyclic linker system which was tethered to the N-5
position of the phenanthridinium heterocycle I (Figure 1).
The major difference in this linker in comparison to the 2¢-
deoxyribofuranoside is the number of carbon atoms be-
tween the phosphodiester bridges in the corresponding
modified oligonucleotides which has been reduced from
three in normal nucleosides to two (in the substitute I).
Herein, we present the alternative synthesis of phenanthri-
dinium-modified oligonucleotides that have the chromo-
phore connected to D-threoninol II (Figure 1) as a linker
bearing three carbon atoms. D-Threoninol has been previ-

ously used for the incorporation of other chromophores,
e.g. acridine,11 naphthyl red12 and methyl red,13 into DNA.
Furthermore, we wanted to compare the absorption and
fluorescence properties of a I-type modified DNA duplex
with that of a II-type one.

(2S,3S)-2-Amino-1,3-butanediol (D-threoninol, 1) was
first converted into the DMT-protected derivative 4 in
three simple steps,14–16 similar to the preparation of the
DMT-protected (S)-aminopropanediol linker17 that we
have used for the synthesis of I-type modified oligo-
nucleotides.9 The phenanthridinium 59 was linked to the
DMT-protected linker 4 to give 6 under the typical condi-
tions of a nucleophilic substitution in DMF.18 Subsequent-
ly, the allyloxycarbonyl (alloc) protecting groups had to
be changed to trifluoroacetyl groups. This procedure is
necessary since trifluoroacetyl groups cannot be used for
the previous alkylation at N-5 during the preparation of 5.9

However, trifluoroacetyl groups are compatible for the
DNA phosphoramidite building block chemistry because
they can be cleaved under typical DNA workup condi-
tions. Additionally, this protecting group strategy has the
advantage that the secondary amino function of the alkyl
linker also gets protected. The removal of the two alloc
groups of 6 was performed under the previously opti-
mized conditions.19 After introduction of the trifluoro-
acetyl groups into 7 yielding 8,20 the preparation of the
phosphoramidite 9 was finished using standard proce-
dures (Scheme 1).21

Figure 1 The phenanthridinium nucleoside analogues I and II 
bearing two different acyclic linkers as 2¢-deoxyriboside substitutes.
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The DNA building block 9 can be used for automated
preparation of fluorescent oligonucleotides applying the
modified coupling protocol we previously published.9,22

Representatively, we synthesized two duplexes, DNA1
and DNA2, bearing either the phenanthridinium hetero-
cycle as a I-type or II-type modification, respectively
(Figure 2). The phenanthridinium-modified single-strand-
ed (ss) oligonucleotides ssDNA1 and ssDNA2 were
quantified by their absorbance at 260 nm22–24 and identi-
fied by mass spectrometry.25,26 Duplexes were formed by
addition of 1.2 equivalents of the unmodified counter-
strand to the phenanthridinium-modified oligonucleotide.
In contrast to the phenanthridinium chromophore the
abasic site analogue S was placed to ensure the possibility
for complete intercalation of the fluorophore, although
previous studies have revealed that the counterbase has no
significant influence on the fluorescence properties.

We characterized the duplexes DNA1 and DNA2 by UV/
Vis absorption, fluorescence and circular dichroism (CD)
spectroscopy in order to compare the optical properties of
the phenanthridinium chromophore with respect to the
I-type and II-type linkers, respectively. Remarkably, the
UV/Vis absorption spectrum of DNA1 showed a maxi-

mum at 533 nm and that of DNA2 at 530 nm (Figure 3).
Both values are very similar and typical for intercalated
ethidium.27 In comparison, the absorption spectrum of
‘free’ ethidium in aqueous solution had its maximum at
ca. 480 nm.28

Subsequently, the steady-state fluorescence spectra of
both modified DNA duplexes were recorded using an ex-
citation wavelength of 530 nm (Figure 4). The emission of
the phenanthridinium chromophore was found in the
range between 550 nm and 800 nm, and the emission
maxima were very similar, 620 nm (DNA1) and 621 nm
(DNA2). Both values are again typical for intercalated
ethidium.26 The emission maximum of ‘free’ ethidium in
water was found at ca. 635 nm.28

Scheme 1 Synthesis of DNA building block 9. Reagents and conditions: (a) Methyl trifluoroacetate, r.t., 16 h, 89%; (b) 4,4¢-dimethoxytrityl
chloride (DMT-Cl; 1.6 equiv), pyridine, r.t., 2 d, 65%; (c) MeOH–concd aq NH3–THF (11:11:5), r.t., 3 d, 86%; (d) 4 (1.2 equiv), i-Pr2NEt (2.0
equiv), DMF, r.t., 5 d, 89%; (e) Bu3SnH (2.0 equiv), Pd(PPh3)4 (0.02 equiv), PPh3 (0.02 equiv), H2O (0.01 equiv), CH2Cl2, r.t., 90 min, quant.;
(f) trifluoroacetic anhydride (7.0 equiv), pyridine (16.0 equiv), CH2Cl2, 0 °C, 10 min, then r.t., 10 min, 93% (crude); (g) i-Pr2NEt (1.2 equiv),
2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (2.0 equiv), CH2Cl2 (abs.), r.t., 45 min.
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Figure 2 Sequence of duplexes DNA1 and DNA2.
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Figure 3 UV–Vis absorption spectra of the phenanthridinium-mo-
dified duplexes DNA1 and DNA2 (2.5 mM in 10 mM Na-Pi buffer).
The inset shows the absorption of the phenanthridinium chromophore
between 400 nm and 600 nm.

Figure 4 Fluorescence spectra of the phenanthridinium-modified
duplexes DNA1 and DNA2 (2.5 mM in 10 mM Na-Pi buffer, lexc =
530 nm).

Finally, both duplexes were characterized by their melting
temperatures (Tm) in thermal dehybridization experiments
and by CD spectroscopy. Compared to unmodified DNA
we observed a significant destabilization of DNA duplex-
es that had been modified with chromophores and the I-
type linker.29 Surprisingly, the Tm value of DNA2 (62 °C)
was slightly lower as compared to that of DNA1 (66 °C)
indicating that the D-threoninol (II-type) linker further
destabilizes the duplex although it has one carbon atom
more (compared to the I-type linker). The CD spectra of
both duplexes, DNA1 and DNA2 (Figure 5), showed a B-
like DNA conformation through the signals in the absorp-
tion range between 230 nm and 290 nm. In addition to
these DNA-typical signals, a broad negative CD band was
detected between 300 nm and 400 nm that is typical for
intercalated ethidium.30 CD spectra of ethidium bound to
macromolecules in a nonintercalative fashion did not
exhibit this negative band.31

Figure 5 Circular dichroism spectra of the phenanthridinium-modi-
fied duplexes DNA1 and DNA2 (2.5 mM in 10 mM Na-Pi buffer).

In conclusion, the characterization32 of both phenanthri-
dinium-containing duplexes (DNA1 and DNA2) by UV–
Vis absorption spectroscopy (including the melting be-
havior), CD spectroscopy, and steady-state fluorescence
spectroscopy clearly showed that the chromophore is
intercalated within the DNA base stack. The comparison
of the optical properties of the two duplexes did not exhib-
it significant differences; in fact the optical properties
were remarkably similar. This shows that the structural
difference between the II-type (DNA2) and the I-type
linker (DNA1) has only a minor influence on the inter-
calation properties of phenanthridinium as an artificial
DNA base.
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