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Catalytic asymmetric benzoylation of 1,2-diols has been developed using a solid-phase asymmetric catalyst. The reaction conditions were
optimized by the screening of different metal salts, solvents, bases, and temperatures. High-throughput screening was performed using circular
dichroism detection, and the results revealed that Nb-imidazoline —copper(l) in combination with diisopropylethylamine was able to catalyze
with high enantioselectivity, giving the monobenzoylated products in high yields and excellent enantiomeric excesses of up to 95% ee.

Practically useful catalysts that combine high activity with is catalyzed by solid-phase cataly3t and the asymmetric
good stereoselectivity have been produced as a result ofinduction is directly monitored by a circular dichroism (CD)
detailed optimization of the reaction conditions. The complex detector (Figure 13.Though the system has been developed
optimization process involves numerous combinations of

parameters (i.e., temperature, solvent, and/or concentration) ||| | [ GGG
which is an obstacle to rapid development of the catalysts.
As such, establishment of a simple and general guideline
would be helpful for modern researéflo explore novel
asymmetric catalysts, we have developed a new high-
throughput screening (HTS) method, in which the asym-
metric reaction from achiral substrateto chiral producB
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for the discovery of new asymmetric catalysis using a supportedNb-imidazoline 2). The construction o2 was

combinatorial library of polymer-supported chiral ligands, confirmed by the analysis dfC-PST/MAS NMR and IR

we envision that the HTS would enable the rapid optimiza- spectra.

tion of asymmetric catalysis even for a single polymer-  With the polymer-supportedib-imidazoline ligands in

supported chiral ligand. hand, we studied the Cu-catalyzed enantioselective monoben-
In recent efforts to create new chiral ligands, we have zoylation ofmesel,2-diols. The importance of asymmetric

succeeded in developing tHs-tethered bis(imidazoline) desymmetrization of diols in obtaining biologically important

ligand 1 (Figure 2)¢ For example, tha—Cu(OTf), catalyst products has promoted recent advances, but the catalytic and
' nonenzymatic asymmetric desymmetrizatiomudsadiols

_ is still limited 8 In the first screening to find the lead catalyst,
various kinds of metal salts were examined as in Scheme 2.
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showed activity in promoting the monobenzoylation of 800/ cyci, |
racemic 1,2-diol. Although the enantiomeric excess (ee) of T ol | CU{DE:J;OAC)
the product was moderate, this preliminary result prompted - P
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To perform the new reaction optimization, we prepared ot e Ao Mool ] o bl oma by o
polymer-supportedb-imidazoline 2) as shown in Scheme 10 0 30 (min

1. After immobilization of chloromethyl imidazoline onto

s Direct monitoring of the asymmetric reaction using CD

Scheme 1. Synthesis of Polymer-Supportétb-Imidazoline ) detection clearly indicated that the most effective catalyst

Ph Ph was the2—CuCl catalyst. The efficiency of the asymmetric
e Y— catalyst was found to decrease somewnhat in the order [Cu]
HN. N Bl NITS > [Pd] ~ [Ni] > [Co]. Despite the fact that recent reports
I \|: OPhHPh Bn\N:r based on Matsumura’s pioneering w&rkave focused on
Q-i-c i Q-8 A 2 the Cu(ll) catalysis, the HTS results show that the Cu(l)
O  CHCla EtsN o \E DMF, Et;N, Nal complex has high catalytic activity. Conventional purification
cl by silica gel column chromatography and analysis using

chiral stationary phase HPLC revealed that the 2-CuCl
catalyst provided the adduct in 64% yield with 61% ee. Thus,
the polystyrylsulfonyl chloride, a nucleophilic substitution the asymmetric conversion yield (ACYJiven as the square
using aminomethyl imidazoline provided the polymer- root of the chemical yield multiplied by the enantiomeric
excess, was 62%. This result is better than that obtained using
(2) Arai, T.; Watanabe, M.; Fujiwara, A.; Yokoyama, N.; Yanagisawa, 2—CuCh (29% yield, 52% ee, ACY 39%).
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s metric reaction. Conventional analysis revealed that the

Scheme 3. Optimization of Reaction Conditions: Solvent, reaction at-40°C gave the product in 79% yield with 80%
Base, and Temperature Effetts ee (ACY = 79%). The reaction at78 °C was quite slow,
2 (5.5 mol %) and only trace amounts of the adduct were obtained even
CuCl (5 mol %) o after 120 h.
amine The optimized conditions were applied to the well-defined
solvent, temp OH 1-Cu(l) catalysis, and the scope and generality is summarized
in Table 1. The simple benzoyl chloridéd) as well as the
1[;:; substituted benzoy! chlorides provided adducts with similar
temp. effects® high levels of enantiomeric excess up to 95% ee (entries
1-4). Moreover, both electron-deficient and electron-suf-
ficient benzoyl chlorides were useful (entries 5 and 6). The
CHCI cyclic diols were also benzoylated with good enantioselec-
600 c°H Cl, DIPEA tivities (entries 9-13), although the appropriate temperature
CH,ON 0°C depended on the reactivity of the substrates. For example,

400 NG the temperature had to be increased ti00for mesel,2-
THF pyr.d.ne P cyclohexanediol 3d) to get sufficient yield.
500 LJ‘ | Finally, the optimized catalyst system consistingNid-
oluene

3a + 4a

800 solvent effects? base effects” 402Gy

[CD]

78°C imidazoline (), CuCl, and DIPEA was applied to the kinetic
resolution of racemic 1,2-diol in Ci&l,. The reaction of
W rac-hydrobenzoin withtawas catalyzed smoothly at40°C
TREET to give the monobenzoylated product in 94% yield (based
[min] on 4a) with 92% ee (Scheme 4.

aKey: (a) examined at rt for 48 h with DIPEA as the base; (b)

examined in CHCl, at rt for 48 h; (c) examined in il with |

DIPEA as the base (48 h at rt?C, and—40°C, 120 h at-78°C). Scheme 4. Kinetic Resolution of Racemic 1,2-Diol

OH :D-HELIJEC,;I OCOPh
in 68% yield with 54% ee. In terms of base, diisopropyl- ) PhIOH + 4a WPhIOH
ethylamine (DIPEA) was apparently the best choice. 11eq. 05eq.

Regarding temperature, reducing the temperature from rt to 1(5.5 mol %), CuCl (5 mol %), 72 h: y. 81%, 91% ee
1 (11 mol %), CuCl (10 mol %), 43 h:'y. 94%, 92% ee

—40 °C dramatically improved the efficiency of the asym-

In conclusion, we have demonstrated a new protocol for
rapid optimization of reaction conditions to obtain the most
ideal catalyst. Research on new and powerful asymmetric

Table 1. Nb-Imidazoline(1)—CuClI-Catalyzed Asymmetric
Benzoylation ofmesel,2-Diols

C‘ug’l ?5"[‘:(')// YO catalysis is under progress using the solid catalysis-CD HTS
OH _ DIPEA system.
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entry diol benzoyl chloride 7 (°C) time (h) yield (%) ee (%)

1 3a 4a —40 47 97 95 Yokoyama of Chiba University for his kind technical support
2 3a 4bX=2CHy) —40 50 98 94 and helpful discussions.

3 8a 4c(X=3-CH;) —40 51 91 89

4 3a 4d(X=4.CHy —40 50 89 93 Supporting Information Available: Experimental pro-

5 3a deX=4Br) 40 >0 74 %2 cedure and analytical data for all new compounds. This
6 3a 4f(X=40CH;) —40 26 87 93 € ar Y _comp ‘

7 3b 4e —40 94 51 68 material is available free of charge via the Internet at
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9 3¢ 4f —40 55 69 61 0L0702122

10 3d 4e —40 54 16 65

11 3d de 0 19 2 80 (7) Kinetic resolution of racemic diols using Cu complex: (a) Gissibl,
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13  3e 4f —178 70 76 86 Roseblade, S.; Kder, V.; Pfaltz, A.Org. Lett.2006 8, 1879-1882. See
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