Benzocycloheptynedicobalt Complexes by Intramolecular Nicholas Reactions

Yu Ding, James R. Green*

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada Fax +1(519)9737098; E-mail: jgreen@uwindsor.ca Received 2 November 2004

Abstract: Lewis acid mediated intramolecular Nicholas reactions of aryl (*Z*)-enyne propargyl acetate- $Co_2(CO)_6$ complexes **1** afford benzocycloheptenyne- $Co_2(CO)_6$ complexes **2** and their heterocyclic analogues.

Key words: Nicholas reactions, alkynes, arenes, complexes, transition metals

The use of acyclic alkynedicobalt complexes and Nicholas reactions¹ have proven themselves to be highly successful in the rapid preparation of cycloheptyne-Co₂(CO)₆ complexes.²⁻⁴ Only a limited number of ring fused versions of these cycloheptyne complexes are known; of these, our interest has been drawn to the benzocycloheptyne complexes. Just one report of the synthesis of benzocycloheptynedicobalt complexes has been published, involving an impressive carbonylative Heck reaction of an envne complex.⁵ Nevertheless, the success of this process required replacement of two CO ligands by a dppm ligand, and furthermore employed diphenylacetyl $ene-Co_2(CO)_6$ as the optimal carbonylation source. A variety of naturally occurring compounds containing benzocycloheptane units are known, particularly the icetexanes⁶ or other diterpenes⁷ and the colchicines,⁸ or their heterocyclic analogues, particularly the furanocycloheptanes.⁹ Therefore, we considered further synthetic effort towards the ready synthesis of benzocycloheptynedicobalt systems to be of importance. Given the known ability of propargyldicobalt cations to enter into Nicholas reactions with electron rich arenes, it was our belief that the ionization of 1 would provide access to benzocycloheptynedicobalt complexes 2 by way of an intramolecular Nicholas reaction (Equation 1).

Equation 1 Intramolecular Nicholas reaction for benzocycloheptenyne- $Co_2(CO)_6$ preparation.

SYNLETT 2005, No. 2, pp 0271–0274 Advanced online publication: 17.12.2004 DOI: 10.1055/s-2004-837215; Art ID: S10504ST © Georg Thieme Verlag Stuttgart · New York The substrates for these cyclization reactions were derived from the appropriate arylaldehydes **3** (Scheme 1). Carbon tetrabromide-PPh₃ mediated conversion of **3** to the corresponding dibromoalkenes **4** occurred in high yield.¹⁰ Critical for access to Z-alkenes of high stereochemical purity was the stereoselective Pd-catalyzed reduction of the *trans* carbon-bromine bond of **4**, with subsequent Sonogashira coupling of the remaining *cis* bromide and the appropriate propargyl alcohol without intermediate isolation, according to the method of Uenishi.¹¹ The Z-enyne-propargyl alcohols **5** were obtained in fair to good yields,¹² and were subjected to acetylation and complexation under conventional conditions to afford **1** (Table 1).¹³

With the requisite substrates in hand, attention was turned to cyclization reactions. $BF_3 \cdot OEt_2$ was chosen as the preferred Lewis acid due to its minimized tendency to induce decomposition in related cobalt complexes.¹⁴ Although unactivated arenes are generally insufficiently reactive to participate in Nicholas reactions, unsubstituted arene **1a** did undergo gradual reaction at 0 °C. After 3.5 hours, a small amount of starting material remained, but benzocycloheptyne **2a** could be isolated in 49% yield (58% yield based on recovered starting material). Longer reaction periods resulted in increased amounts of unproductive decomposition.

With electron donating substituents on the benzene ring, the reactions were noticeably more rapid. *m*-Methyl-substituted **1b** and *m*-methoxy-substituted **1c** underwent complete starting material consumption in 90 minutes and 30 minutes, respectively. Compound **2b** was obtained in 67% yield as a mixture of products of substitution *p*- and *o*- to the methyl group (**2b**:**2b'** = 3.5:1, inseparable), whereas methoxy compound **2c** was obtained in 53% yield as a 4.9:1 separable mixture of **2c** and **2c'** (Figure 1). Substitution at the propargylic site did not interfere with the cyclization process. Despite the potential for a competitive elimination process, methyl-substituted **1d**

 Table 1
 Preparation of Propargyl Acetate 1: Yields of Intermediates

	ArCHO 3	Yield 4 (%)	Yield 5 (%)	Yield 1 (%)
a	СНО	94	71	80
b R' = Me c R' = OMe d R' = OMe R = Me	R' CHO	92 100 -	58 49 90	86 76 70
$\mathbf{e} \mathbf{R}' = \mathbf{OMe}$ $\mathbf{R} = \mathbf{Ph}$		-	70	80
f X = O $g X = S$	СНО	94 90	54 51	70 81
h	X CHO	77	62	72
i		93	65	70
j	MeO CHO	100	45ª	85 ^b
k	Me ₃ Si	91	68	80

2c' R = H, R' = H, R" = OMe 2d' R = Me, R' = H, R" = OMe 2e' R = Ph, R' = H, R" = OMe

2e R = Ph, R' = OMe, R" = H

^a Yield of isolated acetate.

^b Yield based on acetate.

reacted readily, giving 2d in good yield (77%, 2d:2d' = 7:1, separable) and with no elimination sideproduct. Phenyl-substituted 2e also reacted promptly, affording 2e in excellent yield (90%, 2e:2e' = 12.5:1, separable).

Heteroaryl based systems were also capable of forming the corresponding fused cycloheptyne complexes. 3-Substituted furyl system 1f afforded 2f quickly and in good yield (78%). The corresponding thienyl system also cyclized rapidly, but gave a small amount of C-4 substitution product 2g' in addition to the expected 2g (83% yield, 2g:2g' = 5:1, inseparable).¹⁵ The C-3-substituted indole substrate **1h** gave cycloheptyne complex **2h** in 38% yield, but the major product was actually cyclooctyne complex 2h' (47% yield), the result of competitive reaction through C-4.

Accomplishing cyclization at sites disfavored for electrophilic aromatic substitution by the existing substituents or by the ring system itself proved to be more problematic, but possible in some cases. 2-Substituted furyl system 1i gave only dimeric-oligomeric products under conventional conditions. Higher dilution conditions did result in a

Figure 1 Benzocycloheptenynedicobalt cyclization products 2.

product mixture apparently containing a benzocycloheptenyne complex, but it was both in low yield and not readily purified. Trimethoxyarene 1j also cyclized only in low yield (22%) to give 2j under conventional conditions, but high dilution conditions (10^{-3} M) allowed formation of 2j in 51% yield. As a result of these difficulties, our choice of a *p*-disubstituted substrate for investigation was *p*-trimethylsilyl arene 1k, by virtue of the minimally o-/p-activating nature of the TMS group and the facility with which arylsilanes are converted into other arenes.¹⁶ In the event, reaction of 1k was somewhat slow, and it was again prudent to stop the reaction before complete starting material consumption, but 2k could be obtained in 58% yield (70% based on recovered starting material).¹⁷

We wished to demonstrate the possibility of removal of the metal complex in one of these cases. Therefore, substrate 2c was chosen for reductive decomplexation under the Bu₃SnH protocol of Isobe.¹⁸ Under the literature conditions (Bu₃SnH, benzene, 65 °C) modest yields of a mixture of benzocycloheptadiene 6 were obtained along with its double bond migration isomer 6' (40% yield, 6:6' = 2:1). Reducing the reaction temperature to 52 °C allowed improvement in both the yield and isomeric ratio (58% yield, **6**:**6**′ = 3:1, Equation 2).

 Table 2
 Cycloheptenyne Complexes 2 from Propargyl Acetates 1

Starting 1	Reaction time (h)	Product 2	Yield ^{a,b}
1a	3.5	2a	49 [58]
1b	1.5	2b/2b′	67 (3.5:1)
1c	0.5	2c/2c′	53 (4.9:1)
1d	0.5	2d/2d′	77 (7.0:1)
1e	0.5	2e/2e′	90 (12.5:1)
1f	0.5	2f	78
1g	0.5	2g/2g′	83 (5.0:1)
1h	2	2h/2h′	85 (0.81:1)
1j	0.5	2j	51°
1k	4	2k	58 [70]

^a Yields in square brackets are based on recovered starting material. ^b Numbers in parentheses are 2:2' ratios.

^c Conducted under high dilution (10⁻³ M) conditions.

In summary, a series of benzocycloheptenynedicobalt complexes may be obtained by intramolecular Nicholas reactions of arenes or their heterocyclic analogues. Both electron neutral and electron rich arenes will participate in the process, although difficulties may be encountered where the existing substitutents direct strongly away from the intended site of intramolecular attack. The hexacarbonyldicobalt unit may be removed with concomitant reduction of the alkyne function. The use of blocking groups to address regiochemical issues, and application of this chemistry to dibenzocycloheptynedicobalt complexes, are under study and will be reported in due course.

Equation 2 Reductive decomplexation of a benzocycloheptenyne complex.

Acknowledgment

We are grateful to NSERC (Canada), the Canada Foundation for Innovation (CFI), and the Ontario Innovation Trust (OIT) for support of this research.

References

- (1) For recent reviews, see: (a) Green, J. R. Curr. Org. Chem. 2001, 5, 809. (b) Teobald, B. J. Tetrahedron 2002, 58, 4133.
- (2) (a) Lu, Y.; Green, J. R. Synlett 2001, 243. (b) Patel, M. M.; Green, J. R. Chem. Commun. 1999, 509. (c) Green, J. R. Chem. Commun. 1998, 1751.
- (3) (a) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498. (b) Tanino, K.; Kondo, F.; Shimizu, T.; Miyashita, M. Org. Lett. 2002, 4, 2217. (c) Tanino, K.; Shimizu, T.; Miyama, M.; Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 6116. (d) Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128.
- (4) (a) Young, D. G. J.; Burlison, J. A.; Peters, U. J. Org. Chem. 2003, 68, 3494. (b) Green, J. R. Synlett 2001, 353. (c) Iwasawa, N.; Sakurada, F.; Iwamoto, M. Org. Lett. 2000, 2,871.
- (5) Iwasawa, N.; Satoh, H. J. Am. Chem. Soc. 1999, 121, 7951.
- (6) For examples, see: (a) Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O. K.; Ashurmetov, O. A. J. Nat. Prod. 2003, 66, 128. (b) Ulubelen, A.; Topcu, G. J. Nat. Prod. 2000, 63, 879.
- (7) For examples, see: (a) Ulubelen, A.; Topcu, G.; Tan, N.; Lin, L.-J.; Cordell, G. A. Phytochemistry 1992, 31, 2419. (b) Purushothaman, K. K.; Chandrasekharan, S.; Cameron, A. F.; Connolly, J. D.; Labbe, C.; Maltz, A.; Rycroft, D. S. Tetrahedron Lett. 1979, 979. (c) Lee, J.; Hong, J. J. Org. Chem. 2004, 69, 6433.
- (8) Bentley, K. W. Nat. Prod. Rep. 2004, 21, 395; and references therein.
- (9)For examples, see: (a) Ho, T.-L.; Lin, Y.-J. J. Chem. Soc., Perkin Trans. 1 1999, 1207. (b) Inoue, M.; Carson, M. W.; Frontier, A. J.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 1878. (c) Asakawa, Y.; Toyota, M.; Tsunematsu, T.; Kubo, I.; Nakanishi, K. Phytochemistry 1980, 19, 2147.
- (10) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745.
- (11) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1996, 63, 8965.
- (12) Selected compounds: Compound **5b**: IR (neat, KBr): $v_{max} = 3345, 3020, 2920,$ 2193 cm⁻¹. ¹H NMR: δ = 1.77 (1 H, br), 2.38 (3 H, s), 4.50 (1 H, d, J = 2.0 Hz), 5.71 (1 H, dt, J = 11.9, 2.0 Hz), 6.64 (1 H, d, J = 11.9 Hz), 7.11 (1 H, d, J = 7.5 Hz), 7.27 (1 H, dd, J = 7.7, 7.5 Hz), 7.63 (1 H, s), 7.68 (1 H, d, J = 7.7 Hz). ¹³C NMR: δ = 139.4, 137.8, 136.1, 129.4, 128.2, 125.6, 106.5, 93.6, 84.3, 51.8, 21.4. MS (EI): *m/z* = 172. HRMS (EI): *m/z* calcd for C12H12O: 172.0888; found: 172.0888 Compound **5g**: IR (neat, KBr): $v_{max} = 3358, 3097, 2918, 2191, 1699, 1602 cm⁻¹. ¹H NMR: <math>\delta = 2.39$ (1 H, s), 4.51 (2 H, d, J = 2.0 Hz), 5.62 (1 H, dt, J = 11.7, 2.3 Hz), 6.70 (1 H, d, J = 11.7 Hz), 7.29 (1 H, dd, J = 4.9, 2.6 Hz), 7.62 (1 H, d, J = 5.0 Hz), 7.76 (1 H, d, J = 2.1 Hz). ¹³C NMR: $\delta = 138.3$, 133.0, 127.7, 125.6, 125.2, 105.2, 93.8, 84.4, 51.6. MS (EI): m/z = 164. HRMS (EI): m/z calcd for C₉H₈OS: 164.0296; found: 164.0292.
- (13) Selected compounds: Compound **1b**: IR (neat, KBr): $v_{max} = 3014, 2927, 2092,$ 2024, 1748 cm⁻¹. ¹H NMR: δ = 2.03 (3 H, s), 2.39 (3 H, s), 4.52 (2 H, s), 6.61 (1 H, d, J = 11.0 Hz), 6.80 (1 H, d, *J* = 11.0 Hz), 7.02 (2 H, d, *J* = 8.2 Hz), 7.14 (1 H, d, *J* = 7.6 Hz), 7.29 (1 H, d, J = 7.5 Hz). ¹³C NMR: δ = 199.1 (br), 170.5, 138.2, 137.6, 132.5, 129.0, 128.5, 128.4, 127.5, 125.4, 91.4, 83.5, 64.9, 21.3, 20.3. MS (EI): *m/z* = 472 [M -CO]⁺, 444 [M - 2 CO]⁺, 416 [M -3 CO]⁺, 388 [M - 4 CO]⁺, 360 [M - 5 CO]⁺, 332 [M - 6CO]⁺. HRMS (EI): m/z calcd for C₂₀H₁₄ Co₂O₈: 443.9454 [M – 2 CO]⁺; found: 443.9457.

Synlett 2005, No. 2, 271-274 © Thieme Stuttgart · New York

Compound **1g**: IR (neat, KBr): $v_{max} = 3013$, 2956, 2092, 2022, 1746 cm⁻¹. ¹H NMR: $\delta = 2.07$ (3 H, s), 4.73 (2 H, s), 6.62 (1 H, d, J = 11.0 Hz), 6.67 (1 H, d, J = 11.0 Hz), 6.98 (1 H, d, J = 4.3 Hz), 7.13 (1 H, s), 7.38 (1 H, s). ¹³C NMR: $\delta = 199.3$ (br), 170.5, 138.2, 128.3, 128.2, 126.8, 126.2, 123.4, 91.4, 83.3, 64.5, 20.3. MS (EI): m/z = 464 [M – CO]⁺, 436 [M – 2 CO]⁺, 408 [M – 3 CO]⁺, 380 [M – 4 CO]⁺, 352 [M – 5 CO]⁺, 324 [M – 6 CO]⁺. HRMS (EI): m/z calcd for $C_{17}H_{10}Co_2O_8S$: 435.8862 [M – 2 CO]⁺; found: 435.8853.

- (14) Experimental Procedure: To a stirred ice cold solution of the propargyl acetate complex (0.2 mmol) in CH₂Cl₂ (20 mL) was added BF₃·OEt₂ (85.2 mg, 0.60 mmol) in CH₂Cl₂ (4 mL) over 10 min. After stirring at 0 °C for the time indicated in Table 2, sat. NaHCO₃ solution was added, and the mixture was subjected to a conventional work up. Purification by flash chromatography afforded sequentially the benzocycloheptenyne complex and any recovered starting material.
- (15) This reflects a tendency for a slightly lower preference for C-2 reactivity in thiophenes relative to furans and perhaps the known tendency for electron withdrawing C-3 groups to deactivate C-2 to a greater degree than C-4. See: Taylor, R. In *The Chemistry of Heterocyclic Compounds*, Part 2, Vol. 44; Gronowitz, S., Ed.; Wiley: New York, **1986**, Chap. 1, 16.
- (16) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley and Sons: New York, 2000.
- (17) Compound **2a**: IR (neat, KBr): $v_{max} = 2929$, 2091, 2021, 1574 cm⁻¹. ¹H NMR: $\delta = 4.18$ (2 H, s), 6.77 (1 H, d, J = 10.1 Hz), 6.93 (1 H, d, J = 10.1 Hz), 7.22 (4 H, m). ¹³C NMR: $\delta = 199.3$ (br), 137.5, 137.3, 133.1, 132.5, 129.4, 128.9, 128.8, 126.9, 102.3, 86.5, 40.8. MS (EI): m/z = 426 [M]⁺, 398 [M - CO]⁺, 370 [M - 2 CO]⁺, 342 [M - 3 CO]⁺, 314 [M - 4 CO]⁺, 286 [M - 5 CO]⁺, 258 [M - 6 CO]⁺. HRMS (EI): m/z calcd for C₁₇H₈Co₂O₆: 426.9063 [M + H]⁺; found: 426.9069.

Compound **2b**: IR (neat, KBr): $v_{max} = 3014$, 2858, 2090, 2053, 2021, 1557 cm⁻¹. ¹H NMR: $\delta = 2.31$ (3 H, s), 4.14 (2 H, s), 6.72 (1 H, d, J = 10.1 Hz), 6.90 (1 H, d, J = 10.1 Hz), 7.00 (1 H, s), 7.07 (1 H, d, J = 7.9 Hz), 7.15 (1 H, d, J = 7.6 Hz); resonances for minor regioisomer (**2b**') could be observed at $\delta = 2.51$ (3 H, s), 4.10 (2 H, s), 6.82 (1 H, d, J = 10.0 Hz), 6.93 (1 H, d, J = 10.0 Hz), 7.03 (1 H, m), 7.10 (1 H, m), 7.17 (1 H, m). ¹³C NMR: $\delta = 199.4$ (br), 137.3, 136.4, 134.5, 133.2, 129.6, 129.4, 128.5, 102.5, 86.9, 40.4, 20.7; resonances for the minor regioisomer could be observed at $\delta = 133.8$, 130.7, 130.4, 128.8, 126.3, 34.2, 21.1. MS (EI): m/z = 440 [M]⁺, 412 [M – CO]⁺, 384 [M – 2 CO]⁺, 356 [M⁺ – 3 CO], 328 [M – 4 CO]⁺, 300 [M – 5 CO]⁺, 272 [M – 6 CO]⁺. HRMS (EI): m/z calcd for C₁₈H₁₀Co₂O₆: 439.9141; found: 439.9137.

Compound **2c**: IR (neat, KBr): $v_{max} = 3014$, 2956, 2837, 2090, 2050, 2020, 1604 cm⁻¹. ¹H NMR: $\delta = 3.77$ (3 H, s), 4.10 (2 H, s), 6.68 (1 H, d, J = 10.1 Hz), 6.71 (1 H, s), 6.79 (1 H, d, J = 8.3 Hz), 6.92 (1 H, d, J = 10.1 Hz), 7.16 (1 H, d, J = 8.3 Hz). ¹³C NMR: $\delta = 199.3$ (br), 158.3, 138.6, 132.8, 130.5, 130.0, 129.3, 117.7, 113.9, 102.9, 86.6, 55.3, 39.9.

MS (EI): $m/z = 456 [M]^+$, $428 [M - CO]^+$, $400 [M - 2 CO]^+$, $372 [M - 3 CO]^+$, $344 [M - 4 CO]^+$, $316 [M - 5 CO]^+$, $288 [M - 6 CO]^+$. HRMS (EI): m/z calcd for $C_{18}H_{10}Co_2O_7$: 455.9090; found: 455.9051.

Compound **2e**: IR (neat, KBr): $v_{max} = 3026, 2935, 2090, 2052, 2022, 1602, 1556 cm⁻¹. ¹H NMR: <math>\delta = 3.88$ (3 H, s), 5.35 (1 H, s), 6.77 (1 H, dd, J = 8.6, 2.6 Hz), 6.82 (1 H, s), 6.83 (1 H, m), 7.01 (1 H, d, J = 10.1 Hz), 7.09 (1 H, d, J = 8.5 Hz), 7.23 (1 H, m), 7.29 (2 H, m), 7.35 (2 H, m). ¹³C NMR: $\delta = 199.4$ (br), 158.3, 144.4, 138.3, 133.5, 133.1, 131.3, 129.6, 128.6, 127.0, 118.4, 114.2, 107.1, 84.8, 55.4, 55.3. MS (EI): m/z = 504 [M – CO]⁺, 476 [M – 2 CO]⁺, 448 [M – 3 CO]⁺, 420 [M – 4 CO]⁺, 392 [M – 5 CO]⁺, 364 [M – 6 CO]⁺. HRMS (EI): m/z calcd for C₂₄H₁₄Co₂O₇: 503.9454

[M – CO]⁺; found: 503.9437. Compound **2f**: IR (neat, KBr): $v_{max} = 3025, 2928, 2092,$ 2051, 2020. ¹H NMR: δ = 4.47 (2 H, s), 6.31 (1 H, s), 6.39 (1 H, d, J = 9.6 Hz), 6.57 (1 H, d, J = 9.6 Hz), 7.30 (1 H, s). ¹³C NMR: δ = 199.3 (br), 148.8, 140.8, 125.1, 124.1, 120.5, 113.3, 92.2, 86.6, 34.0. MS (EI): *m*/*z* = 416 [M]⁺, 388 [M -CO]⁺, 360 [M - 2 CO]⁺, 332 [M - 3 CO]⁺, 304 [M - 4 CO]⁺, 276 [M - 5 CO]+, 248 [M - 6 CO]+. HRMS (EI): m/z calcd for C₁₅H₆Co₂O₇: 415.8777 [M]⁺; found: 415.8752. Compound **2g**: IR (neat, KBr): v_{max} = 2926, 2856, 2092 2055, 2024, 1699, 1650, 1540 cm⁻¹. ¹H NMR: δ = 4.45 (2 H, s), 6.68 (1 H, AB quartet, J = 16.0 Hz), 6.74 (1 H, AB quartet, J = 16.1 Hz), 6.88 (1 H, d, J = 8.7 Hz), 7.08 (1 H, d, J = 8.8 Hz; resonances for minor regioisomer (2g') could be observed (in CD₃CN) at δ = 4.34 (2 H, s), 6.66 (1 H, d, *J* = 9.9 Hz), 6.80 (1 H, d, *J* = 9.7 Hz), 7.20 (1 H, s), 7.38 (1 H, s). ¹³C NMR: δ = 199.1 (br), 136.8, 136.7, 132.0, 126.4, 126.2, 122.0, 97.6, 86.8, 34.6; resonances for the minor regioisomer could be observed at $\delta = 128.7, 126.9, 124.8,$ 35.5. MS (EI) *m/z* = 432 [M]⁺, 404 [M – CO]⁺, 376 [M – 2 CO]⁺, 348 [M – 3 CO]⁺, 320 [M – 4 CO]⁺, 292 [M – 5 CO]⁺, 264 $[M - 6 CO]^+$. HRMS (EI): m/z calcd for $C_{15}H_6Co_2O_6S$: 403.8575 [M - CO]+; found: 403.8554. Compound **2j**: IR (neat, KBr): $v_{max} = 3055, 2090, 2051,$ 2021, 1594 cm⁻¹. ¹H NMR: δ = 3.78 (3 H, s), 3.83 (3 H, s), 3.91 (3 H, s), 4.05 (2 H, s), 6.62 (1 H, s), 6.93 (1 H, d, J = 10.4 Hz), 7.12 (1 H, d, J = 10.4 Hz). ¹³C NMR: $\delta =$ 199.4, 153.3, 152.8, 141.4, 134.3, 127.7, 125.9, 124.7, 108.4, 102.9, 87.7, 61.1, 61.0, 56.0, 41.1. MS (EI): *m/z* = 516 [M]⁺, 460 [M - 2 CO]⁺, 404 [M - 4 CO]⁺. HRMS: *m/z* calcd for C₂₀H₁₄Co₂O₉: 403.9505 [M – 4 CO]⁺; found: 403.9492. Compound **2k**: IR (neat, KBr): $v_{max} = 3014, 2957, 2360,$ 2091, 2052, 2022 cm⁻¹. ¹H NMR: $\delta = 0.28$ (9 H, s), 4.20 (2 H, s), 6.76 (1 H, d, J = 10.1 Hz), 6.94 (1 H, d, J = 10.1 Hz), 7.16 (1 H, d, J = 7.5 Hz) 7.36 (1 H, s), 7.37 (1 H, d, J = 6.2 Hz). ¹³C NMR: δ = 199.4 (br), 142.0, 137.7, 136.3, 134.2, 133.2, 131.9, 131.7, 129.0, 102.4, 86.6, 40.9, -1.2. MS (EI) *m*/*z* = 498 [M]⁺, 470 [M – CO]⁺, 442 [M – 2 CO]⁺, 414 [M – 3 CO]⁺, 386 [M – 4 CO]⁺, 358 [M – 5 CO]⁺, 330 [M – 6 CO]⁺. HRMS (EI): *m/z* calcd for C₂₀H₁₆Co₂O₆Si: 469.9431 [M – CO]⁺; found: 469.9434.

(18) Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 2609.