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The development of reusable base metal catalysts for innovative catalytic transformations is a key tech-
nology toward sustainable production of fine chemicals, pharmaceuticals, and other function products.
Herein, we report the preparation of a new highly dipersed manganese oxides of octahedral molecular
sieve (OMS-2) nanorod-supported cobalt catalyst, which is successfully applied for aerobic dehydrocy-
clization of vicinal diols and amidines to access structurally diverse imidazolones, a class of valuable
compounds found in numerous natural and biomedical products. The developed catalytic transformation
proceeds with broad substrate scope, good functional group compability, the use of green molecular oxy-
gen and reusable cobalt catalyst, which offers an important platform for the conversion of abundant and
sustainable alcohol resources into functional N-heterocycles. The strategy combining nanocatalyst design
with aerobic dehydrocoupling is anticipated to achieve other challenging catalytic transformations.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Concerning the energy crisis and gradual deterioration of the
ecological environment, it is urgent to find alternatives to tradi-
tional petrochemical energy sources as rawmaterials for the chem-
ical industry [1–3]. As a class of abundant and sustainable
resources, vicinal diols are largely produced from fermentation
and degradation of lignocellulose in nature [4–5]. Consequently,
the search for novel approaches enabling efficient conversion of
biomass-derived alcohols into functional products is of significant
importance [6–16], and it contributes to reducing CO2 emissions
and conserving our fossil carbon feedstocks. However, due to the
existence of two or multiple hydroxy groups, it is hard to control
the regioselectivity during the transformation of vicinal diols.
Moreover, dehydrogenation-induced activation of diols generally
requires elevated temperatures, which easily leads to substrate
decomposition [17]. In this context, there is a high demand for
the development of compatible catalysts allowing selective con-
version of vicinal diols.
Among various functional products, N-heterocycles represent a
class of extremely important substances ubiquitouly applied in the
fields of science and technology[18–20]. However, there are only a
handful of examples focusing on the conversion of vicinal diols to
N-heterocycles through acceptorless dehydrogenative coupling or
hydrogen autotransfer strategy. For instance, Beller and the
coworkers have successively reported the synthesis of substituted
pyrroles and oxazolidin-2-ones by a ruthenium-catalyzed multi-
component recation and the annulation of vicinal diols with urea,
respectively (Scheme 1a) [21–22]. The groups of Kempe and Mil-
stein have successfully converted vicinal diols into quinoxalines/
pyrazines with aromatic diamines/ammonia (Scheme 1b) [23–
25]. Through initial mono-amination of vicinal diols with amines
followed by selective dehydrogenative heterocondensation with
c-amino alcohols, Kempe et al demonstrated an iridium-
catalyzed meta-functionalized pyridines (Scheme 1c) [26]. Despite
these interesting catalytic transformations, the utilization of vici-
nal diols for the construction of imidazolinones has never been
accomplished. Noteworthy, imidazolinones have exhibited a broad
spectrum of applications, including the areas of human health [27],
drugs [28], bioactive agents [29], metallic ligands [30], fluorescent
protein chromophores [31] and agrochemicals [32]. To date,
although several approaches have been reported for the synthesis
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Scheme 1. Examples on the transformations of vicinal Diols to N-heterocycles.

Scheme 2. Envisaged new protocol.
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of different substituted imidazolinones [33–35], these transforma-
tions generally suffer from one or more limitations such as the use
of less environmentally benign agents, the need for prefunctional-
ization steps to access specific agents, and difficult catalyst
reusability. In this context, the development of new strategies
enabling efficient access to various imidazolinones, preferably with
biomass-derived vicinal diols and reusable catalysts, would be
highly desirable.

As a continuation of our efforts toward the construction/functio
nalization of N-heterocycles [36–39], we envisioned a new strategy
for general synthesis of imidazolinone 3, that is, the combination of
aerobic dehydrocyclization of vicinal diols 1 and amidines 2 with
group migration. As illustrated in Scheme 2, the first catalytic
dehydrogenation (1st CDH) of 1 under the assitance of nanocobalt
and air (oxidant) forms hydroxyketone 1–1. Then, intermediate B
is generated via the condensation of amindine 2 with 1–1 followed
by the second catalytic dehydrogenation of A (2nd CDH) and base-
mediated amino addition to the carbonyl group (path a). Alterna-
tively, successive full catalytic dehydrogenation of diol 1, the cap-
ture of in situ formed dione 1–2 by amidine 2, and intramolecular
cyclization also rationalize the formation of B (pah b). Finally, the
subsequent group 1,2-migration [33] and protonation of C give rise
to the desired product 3. However, it is important to note that,
under aerobic dehydrogenative and basic conditions, vicinal diols
can easily undergo C-C bond cleavage to generate aldehydes D
[40]. Moreover, the generated aldehydes D unavoidably react with
two molecules of amidine 2 to form triazine by-products F (path c)
[41–42]. Hence, to achieve a chemoselective synthesis of product 3,
it is essential to find a compatible catalyst system to ensure that
the dehydrogenated intermediate 1–1 or 1–2 is timely traped by
amidine 2, thus supressing the decomposition of diols 1 to unde-
sired aldehydes.

With the above information, we believe that the development
of a suitable heterogeneous nanocatalyst would offer a solution
to achieve the desired synthetic purpose (Scheme 2). In compar-
ison with homogeneous catalysis, such type of catalyst has the
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merits of regulable oxidative performance, intrinsic stability and
easy recyclability. In recent years, OMS-2 has gained considerable
attention [43–44], and the OMS-2 materials have exhibited attrac-
tive applications in selective oxidation due to the highly porous
structure, controllable valence state and mobility of oxygen ions
[45–46]. Moreover, cobalt-based nanocatalysts have greatly facili-
tated the advances of alcohol oxidation [47–48]. However, it is
important to note that these examples are only confined to the
well-known organic reactions, and their potentials in developing
innovative organic transformations have been scarcely demon-
strated. Herein, by developing an OMS-2 nanorod-supported cobalt
catalyst, we wish to report, for the first time, its utility in efficient
construction of imidazolinones via aerobic dehydrocyclization of
vicinal diols with amidines.
2. Experimental

2.1. Synthesis of Co/OMS-2–800

Typically, the cobalt heterogeneous catalyst was prepared by
pyrolysis of the cobalt hydroxide immobilized on the pre-
synthesized OMS-2 materials [49–50]. Initially, the OMS-2 frame-
work was obtained from the reaction of KMnO4 and MnSO4 with
assistance of concentrated HNO3. After that, the in situ generated
Co hydroxide was embedded and deposited into the cage of
OMS-2 via impregnation method. Further, this supported hydrox-
ide catalyst was pyrolyzed under argon flow at 800 �C for 4 h,
which produced cobalt-doped octahedral molecular sieve (denoted
as Co/OMS-2–800, for more details see the supporting information
(SI)).

The crystal phase of the Co/OMS-2–800 has been analyzed by
XRD (Figure S1 in the SI). The peaks at 12.7�, 18�, 28.9�, 37.2�,
42�, 50�, 56.1�, 60.1�, 69.4�are assignable to lattice planes of
OMS-2, which is typical cryptomelane phase (JCPDS-00–020-
0908) [46]. This result indicates that the crystal form of OMS-2 is
retained even under high-temperature pyrolysis. Diffraction corre-
sponding to CoO at 2h = 36.4�, 42.4�, 61.5� were recognized with
JCPDS (43–1004) [45]. Moreover, Peaks related to Co3O4 (JCPDS-
43–1003) were observed for a reflection at 2h = 31.3�, 36.8�,
38.4�, 44.8�, 59.2�, 65.2� [45]. A typical IV isotherm with hysteresis
loop arose in the N2 adsorption–desorption isotherms of Co/OMS-
2–800, which suggests a highly porous structure (SI, Figure S2).
Notably, there is a dominant distribution of pore size centered at
2–4 nm, which makes for substrate diffusion.

The morphology and structural characterization of the prepared
Co/OMS-2–800 material was investigated by means of TEM, STEM
and EDS analyses. The TEM images (Fig. 1a-1b and Figure S3 (SI))
clearly demonstrate that the catalyst exists in the form of nanor-
ods. The average diameter of the nanorods was in the range of
85–90 nm. As shown in HAADF-STEM image (Fig. 1c) and corre-
sponding elemental mapping results (Fig. 1d-1f and Figure S4
(SI)), the impregnated Co was well dispersed over OMS-2 nanor-
ods. Furthermore, the signals of Co, Mn, K, C, O are highly over-
lapped and interconnected with each other, which are
surrounded by the carbon matrix. These results confirm that the
Co species present uniform dispersion on the surface of OMS-2.

To identify the surface chemistry of the developed Co/OMS-2–
800, the X-ray photoelectron spectroscopy (XPS) was then con-
ducted. The element contents are as follows: Co (2.44 wt%), C
(22.76 wt%), Mn (41.87 wt%), and O (32.93 wt%). Furthermore,
the content of Co loading was determined by ICP-OES (2.1 wt%),
which is very clsosely to the value detected by XPS (2.44 wt%).
These results indicate the Co species supported on OMS-2 are higly
uniform. The Co 2p spectrum (Figure S5a) shows characteristic
peak of Co2+ species with a binding energy of 780.6 ev [51–52],



Fig. 1. (a-b) TEM images of Co/OMS-2–800. (c) HAADF-STEM image of Co/OMS-2–
800 and corresponding EDS elemental maps (d). (e) HAADF image combined with
elemental map of Co. (f) EDS elemental maps for Co, Mn, O, K.

Scheme 3. Variation of amidines.
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the peak with typical binding energy of 795.8 eV of the Co 2p1/2
electrons is attributed to Co3O4 [53]. In agreement with XRD
results, the XPS results suggest that the cobalt nanoparticles are
cobalt oxides. In addition, The Mn 2p spectrum (Figure S5b) could
be deconvoluted into three peaks with Mn2+ (640.7 eV), Mn3+

(642.2 eV), Mn4+ (643.4 eV), respectively [46]. This unique mixed
valence of Mn is beneficial to electron transport.
3. Catalytic performance.

To test the catalytic performance of the the prepared Co/OMS-
2–800 material, we chose the dehydrogenative cyclication of 1,2-
cyclohexanediol 1a and benzamidine hydrochloride 2a as a model
reaction to evaluate different reaction parameters, including the
effects of the catalysts, base additives, solvents, and temperatures
(see Table S1 in the supporting information (SI)). An optimal GC
yield (87%) of product 3aa with spiro-structure was obtained at
110 �C by using 5 mol% of catalyst, air, KOH (2 equiv), and pyridine
as the oxidant, base, and solvent, respecitively.

With the optimal conditions (standard conditions) in hand, we
then examined the generality of the synthetic protocol. Initially,
the reaction of 1,2-cyclohexanediol 1a with various amidines 2
(2a-2n, see Scheme S1 for their structures in SI) were explored.
As presented in Scheme 3, all the reactions underwent smoothly
and afforded the spirocyclic products in moderate to high yields
(see 3aa-3an). The structure of product 3aa was identified by
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single-crystal X-ray diffraction (Scheme 3). Various functional
groups (i.e., �Me, �OMe, -OC2H5, –NH2, �CF3, �F, �Cl and � Br)
on the aryl ring of amidines 2 were well tolerated, these sub-
stituents with different electronic properties slightly affected the
product yields. In general, the electron-donating groups (3ab-
3af) afforded relatively higher yields than those strong electron-
withdrawing ones (3ag-3aj). This phenomenon is accounted for
the electron-rich substituents enhancing the reactivity of the –
NH2 group of amidines, thus favoring the condensation process
(Scheme 2, from 1 to 1 to A or 1–2 to B). In addition, a series of
heteroaromatic amidines 2 (2 l-2n) also effectively coupled with
1a to afford the desired products (3al–3an) in moderate to good
isolated yields, the success of these examples demonstrates the
potential of the developed chemistry in further development of
N-bidentate ligands (see 3ak and 3am).

Subsequently, we turned our attention to the transformation of
various vicinal diols with different types of amidines (see
Scheme S1 for their structures in SI). As shown in Scheme 4, all
the substrates underwent efficient dehydrocyclization, affording
the multisubstituted imidazolones in a regioselective manner. Sim-
ilar to the results described in Scheme 3, electron-rich amidines
gave the products (Scheme 4, 3bc, 3cb, 3dc) in relatively higher
yields than those of electron-poor ones (Scheme 4, 3bg, 3cg,
3dg). Gratifyingly, among all halo-substituted substrates tested,
no hydrodehalogenation was observed, indicating that the syn-
thetic protocol has unique chemoselectivity. The retention of these
functionalities offers the potential for the fabrication of complex
products via further chemical transformations. In addition to aryl
amidines, alkyl amidines (2o-2q) also underwent efficient oxida-
tive dehydrocyclization, affording the alkylated products in moder-
ate yields (3ao-3bq). Notably, unsymmetrical diol 1d effectively
coupled with different amidines and yielded the desired products
in reasonable yields (3da-3dc).

To assess the stability and reusability of the catalyst material
(Co/OMS-2–800), the model reaction was performed in five con-



Scheme 4. Variation of Both Coupling Partners.

Fig. 2. Reuse of the Co/OMS-2–800 catalysts.

Scheme 5. Control Experiments.

Scheme 6. Synthetic Utilit.
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secutive runs. As illustrated in Fig. 2, the catalytic activity still
maintained very well, only with a slight decline of yields, demon-
strating high stability of the developed catalyst. Meanwhile, the Co
content of reused Co/OMS-2–800 was determined by ICP-AES
(1.9 wt%), which are closely to the Co content of fresh catalyst. In
addition, the HRTEM images (Figure S3e-3f, SI) of the reused cata-
lyst show that there are no obvious Co cluster aggregation during
the reaction and the morphology of catlyst is preserved very well.
The reason for slight reduction of yield is ascribe to slight loss of Co
during the recycling and mechanical abrasion.
4. Mechanistic insights

To gain insight into the reaction mechanism, several control
experiments were performed (Scheme 5). First, the model reaction
was terminated after 2 h to analyze the product system. In addition
to the spirocyclic product 3aa detected in 26% yield, by-product
benzamide 2a-1 and imidazole derivative 3aa’, deriving from the
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hydrolysis of 2a and dehydrogenative condesation of substrates
1a and 2a, were isolated in 3% and 5% yields, respectively
(Scheme 5a). Meanwhile, the time-yield profile of the model reac-
tion was depicted in Figure S6, the desired product 3aa accumu-
lated to a maximum content within 16 h, and very low yields of
compounds 3aa’ and 2a-1 were observed after completion of the
reaction and they can not be transformed into product 3aa
(Scheme 5b), indicating 3aa’ and 2a-1 are the by-products and
the reaction offers high chemoselectivity. Furthermore, subjection
of 1,2-cyclohexanediol 1a under the standard conditions for 2 h
generated 1, 2-cyclohexanedione 1a-2 in 39% yield (Scheme 5c).
Noteworthy, as shown in Figure S8 using methane as the internal
standard, we have detected the generation of H2 during the reac-
tion. The reaction of 1a-2 and 2a under standard conditions
afforded product 3aa in high yield, whereas the coupling of 1a-2
and 2a without catalyst gave product 3aa in 55% yield
(Scheme 5d), which showed that the use of our newly developed
catalyst significantly improve the product yield. The reaction of
hydroxyketone 1b-1 or diketone 1b-2 with 2a also gave product
3ba in high yields (Scheme 5e), indicating that 1b-1 and 1b-2 serve
as the reaction intermediates. All these results are in good agree-
ment with the pathway proposed in Scheme 2.

Next, we were interested in exploring the synthetic utility of the
newly developed chemistry. First, the reaction of 1a and 2q fur-
nished the desired product 3aq in 69% yield (Scheme 6a), a key
precursor employed for the preparation of antihypertensive drug
Avapro [54]. In addition, the reaction of 1c and 2 l produced 5,5-
diphenylimidazolone 3 cl in 71% yield (Scheme 6b), which is used
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as a potent antagonist for human neuropeptide Y5 receptor [29].
Finally, selective hydrosilylation of compound 3aa afforded pro-
duct 4a in 65% yield without reduction of the C = N bond in the
presence of RuHCl(CO)(PPh3)3 catalyst and silane reductant
(Scheme 6c).

In summary, by developing a highly dispersed OMS-2 nanorod-
supported cobalt catalyst, we have successfully applied it to
develop a new aerobic dehydrocyclization reaction of of vicinal
diols and amidines, offering an efficient way to access stucturally
diverse imidazolone derivatives. The catalytic transformation pro-
ceeds with broad substrate scope and good functional group com-
pability, uses molecular oxygen in the air as the green oxidant and
reusable base-metal as the catalyst, and is higly chemoselective
and atom-efficient. The work presented offers a practical platform
for further discovery of functional products including biologically
and pharmaceutically active molecules, and the strategy combin-
ing nanocatalyst design with aerobic dehydrocoupling is antici-
pated to achieve more challenging but valuable synthetic purposes.
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