

Copper-Catalyzed Allylations of Zirconocene Intermediates Generated from *o*-Alkenyl or *o*-Alkynylbenzyl Ether Derivatives and Zirconocene–Butene Complex

Yutaka Ikeuchi,^{†,‡} Takeo Taguchi,[‡] and Yuji Hanzawa^{*,§}

Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa 254-8560, Japan, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392, Japan, and Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida-shi, Tokyo 194-8543, Japan

hanzaway@ac.shoyaku.ac.jp

Received July 6, 2004

o-Alkenyl or alkynyl benzylzirconocene intermediate, which was readily generated by the reaction of 2-alkoxymethylstyrene or 2-alkoxymethyl-1-(trimethylsilylethynyl)-benzene derivative with zirconocene-butene complex (Negishi reagent, "Cp₂Zr"), reacted with allyl or propargyl halides in the presence of a catalytic amount of CuCl to give allylation or allenylation products. Conversion to Dane's diene, which is a key intermediate for estrone synthesis, was efficiently carried out by enyne olefin metathesis of the allylation products.

Alkyl- or alkenylzirconocene chlorides are easily accessible by hydrozirconation of unsaturated compounds with Schwartz reagent ($Cp_2Zr(H)Cl$, Cp = cyclopentadienvl) with high regio- and stereoselectivity. The nucleophilic reactivity of organozirconocene chloride complexes, however, is very poor, and the addition to aldehydes, for example, scarcely takes place. To increase the reactivity of the organozirconocene chloride complexes, activation procedures by adding a stoichiometric or catalytic additive have been devised, and thus organozirconocene chloride complexes have come to be recognized as mild and versatile nucleophilic organometallics.¹ On the other hand, it is impossible to generate benzylzirconocene species through hydrozirconation. Transmetalation from benzylmetal (BnM, M = MgBr or Li) compounds to zirconocene complex could be a suitable way to prepare benzylic zirconocene species. To the best of our knowl-

756 J. Org. Chem. **2005**, 70, 756–759

edge, however, a few reported examples² of *o*-vinylbenzylmetal species are known to be equilibrated with benzocyclobutane compound because of the presence of the highly reactive styrene-olefin unit. Recently, we reported on the generation of *o*-vinylbenzylzirconocene intermediate **2** (Scheme 1)³ by the reaction of *o*-benzyloxymethylstyrene (**1a**) and a stoichiometric amount of zirconocene-butene complex (Negishi reagent, "Cp₂Zr") and its copper-catalyzed acylations^{4,5} and allylations^{6,7} (Scheme 2). It is worth noting that the "Cp₂Zr"-mediated pair selective dimerization of the styrene double bond is a well-established process.⁸

In this paper, we report on (1) allylations of 2-vinylor 2-(TMS-ethynyl)-1-benzylzirconocene intermediates with various allyl halides and (2) the transformation of allylation products to Dane's diene, which is an important intermediate for the preparation of estrone, through intramolecular enyne metathesis using Grubbs catalyst.

At the outset, o-vinylbenzylzirconocene intermediate **2**, which was generated from *o*-benzyloxymethylstyrene (1a) with "Cp₂Zr" in THF at ambient temperature, was treated with allyl bromide (3a) in THF in the presence of a catalytic amount (10 mol %) of CuCl at reflux temperature to give the corresponding allylation product 4a in 88% yield (Table 1, entry 1). Under the same conditions, *p*-methoxystyrene derivative 1b and *p*-fluorostyrene derivative 1c gave allylation products $\hat{4b}$ and 4c, respectively, in good yields (entries 2 and 3). Thus, the electronic nature of a para substituent has little effect on the reactivity of styrene olefin in the ligand exchange with "Cp₂Zr". C₂-Halogenated allylic halides were also used under the present allylation conditions, and thus the corresponding vinyl halide derivatives 4d and 4e were obtained in moderate to good yields (entries 4 and 5). An ester group was tolerated in the present reaction, and the reaction of **3d** gave the corresponding allylation product 4f as the sole product in 88% yield (entry 6). It is noteworthy that the conjugate addition did not take place in the reaction of **3d**, which possesses the Michael acceptor unit. In the reaction of **1a** with propargyl bromide (3e), allene derivative 4g was obtained as the sole product, and the acetylene derivative was not detected at all (entry 7). Thus, the reaction with prop-

^{*} Corresponding author. Phone/Fax: +81-42-721-1569.

[†] Sankyo Co., Ltd.

[‡] Tokyo University of Pharmacy and Life Science.

[§] Showa Pharmaceutical University.

⁽¹⁾ For recent reviews: (a) Marek, I., Ed. *Titanium and Zirconium in Organic Synthesis*; Wiley-VCH: Germany, 2002 (b) Suzuki, K., Wipf, P., Eds. Recent Advances in the Chemistry of Zirconocenes. In Symposium-in Print. *Tetrahedron* **2004**, *60*, 1267. (c) Wipf, P.; Jahn, H., *Tetrahedron* **1996**, *52*, 12853 and references cited therein.

⁽²⁾ To the best of our knowledge, the Li species is unknown. Although corresponding Mg species are known in several examples, the use of 2-vinylbenzylmagnesium species has been limited mostly to polymer chemistry. (a) Hatada, K.; Shiozaki, T.; Ute, K.; Kitayama, T. Polymer Bull. 1988, 19, 231. (b) Kuendig, E. P.; Perret, C. Helv. Chim. Acta 1981, 64, 2606. (c) Duboudin, J. G.; Jousseaume, B.; Pinet, M. J. Chem. Soc., Chem. Commun. 1977, 454.
(3) Hanzawa, Y.; Ikeuchi, Y.; Nakamura, T.; Taguchi, T. Tetrahedron

⁽³⁾ Hanzawa, Y.; Ikeuchi, Y.; Nakamura, T.; Taguchi, T. *Tetrahedron Lett.* **1995**, *36*, 6503.

⁽⁴⁾ Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 2004, 45, 4495.

⁽⁵⁾ Organozirconium-mediated acylations, see: (a) Wipf, P.; Xu, W.
Synlett 1992, 718. (b) Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
(6) Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 2004,

⁽⁶⁾ Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 2004, 45, 3717.

⁽⁷⁾ Organozirconium-mediated allylations, see.: (a) Venanzi, L. M.;
Lehmann, R.; Keil, R.; Lipshutz, B. H. *Tetrahedron Lett.* **1992**, *33*, 5857.
(b) Heron, N. M.; Adams, J. A.; Hoveyda, A. H. J. Am. Chem. Soc. **1997**, *119*, 6205. (c) Takahashi, T.; Kotora, M.; Kasai, K.; Suzuki, N. Organometallics **1994**, *13*, 4183.

⁽⁸⁾ Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124 and references cited therein.

SCHEME 1. Generation of Benzylzirconocene Intermediate 2

SCHEME 2. Acylations and Allylations of Benzylzirconocene Intermediate 2

TABLE 1. CuCl-Catalyzed Allylations of2-Alkoxymethylstyrene Derivatives^a

 a Reaction conditions: (1) 1a-c (0.5 mmol), "Cp₂Zr" (0.525 mmol), THF (7 mL), rt; (2) 3a-e (0.75 mmol), CuCl (0.05 mmol), THF, reflux. b Isolated yields. c Acetylene derivative (S_N2 product) was not detected by 300 MHz $^1\mathrm{H}$ NMR.

argyl bromide (3e) has proceeded with a complete $S_N 2'$ process to give the allene product.

Allylations of *o*-alkynylbenzylmethyl ether derivatives $5\mathbf{a}-\mathbf{c}$ under the same conditions as for the styrene derivatives $1\mathbf{a}-\mathbf{c}$ were also examined, and the results are shown in Table 2. Although a slightly increased quantity of "Cp₂Zr" was required for the complete consumption of the starting material (by TLC), the allylation of $5\mathbf{a}$ with allyl bromide ($3\mathbf{a}$) proceeded to give an allylation product $7\mathbf{a}$ in a good yield (entry 1). *p*-Methoxy- and *p*-fluorophen-

 a Reaction conditions: (1) 5a-c or 6 (0.5 mmol), "Cp₂Zr" (0.6 mmol), THF (7 mL), rt; (2) **3a**, **3c**, or **3e** (0.75 mmol), CuCl (0.05 mmol), THF, reflux. b Isolated yields. c Acetylene derivative (S_N2 product) was not detected by 300 MHz $^1\mathrm{H}$ NMR.

yl derivatives **5b** and **5c**, respectively, also reacted with **3a** to give corresponding allylation products **7b**, **7c**, and **7d** in good yields (entries 2–4). Although the clear spectral data of the intermediates generated from **5a**–**c** could not be obtained, we assumed the presence of benzylzirconocene intermediates **9a**–**c** containing an o-TMS-alkyne unit as well (Scheme 3).

Same as the reactions of the styrene derivative, the reaction of **5a** with propargyl bromide (**3e**) gave an allene derivative **7e** as the sole product in 68% yield (entry 5). In contrast to the allylations of $1\mathbf{a}-\mathbf{c}$ and $5\mathbf{a}-\mathbf{c}$, the reaction of *o*-alkoxymethylphenylallene derivative **6** gave a complex mixture, and the desired allylated phenylallene derivative **8** could not be obtained (entry 6).

Although the reactions of propargyl bromide gave allene compounds (4g, 7e), an easy conversion of the allylation product 4e or 7d to ene-yne 10 (83% yield) or diyne 11 (78% yield) was achieved by the treatment of 4e or 7d with LDA (2 equiv) in THF (Scheme 4).⁹ Thus,

SCHEME 3. Generation of Benzylzirconocene Intermediate 9

SCHEME 4. Transformations of Vinyl Bromide Derivatives to Acetylene Derivatives

SCHEME 5. Enyne Metathesis^a

 a Reagents and conditions: (a) TBAF, THF, rt; (b) second-generation Grubbs catalyst, CH_2Cl_2, rt.

it is possible to introduce a propargyl or allenyl group to the benzylic position by the choice of the reaction.

Recent advances of the ring-closing metathesis (RCM) provide a powerful tool for the synthesis of cyclic compounds with a wide range of ring sizes. The present CuCl-catalyzed allylation of **5b** provides ene-yne compound **7b**. As a synthetic application of the present allylation product **7b**, RCM of ene-yne derivative **7b**, which is expected to give a conjugated diene compound known as Dane's diene **13a**,¹⁰ an important intermediate for the synthesis of estrone,¹¹ was examined. The preparation of the intermediate **13a** was efficiently carried out by an intramolecular enyne metathesis¹² using Grubbs catalyst¹³ (Scheme 4).

Although the direct enyne metathesis of **7b** or **7c** did not proceed even under reflux conditions, intramolecular enyne metathesis (second-generation Grubbs catalyst (5 mol %), CH₂Cl₂, rt) of desilylated acetylene derivatives **12a** proceeded to give Dane's diene **13a** in 75% yield. In enyne metathesis chemistry, a fluorine substituent on the aromatic ring afforded fluorine analogue **13b** in 52% yield (Scheme 4).

In conclusion, we have demonstrated the efficient generation and carbon-carbon bond formation of *o*alkenyl- or alkynylbenzylzirconocene intermediates with allylic halide derivatives under CuCl-catalyzed conditions. The enyne metathesis of the allylation product derived from the *o*-alknylbenzylzirconocene intermediates with Grubbs catalyst afforded Dane's diene with high efficiency, which is a key intermediate for the estrone synthesis.

Experimental Section

Typical Procedure for Allylations of o-Vinylbenzylzir**conocene Intermediate.** To a solution of Cp₂ZrCl₂ (153 mg, 0.525 mmol) in THF (5 mL) was added n-BuLi (1.6 M solution in *n*-hexane, 0.66 mL, 1.05 mmol) at -78 °C, and the mixture was stirred for 1 h. To this solution was added a solution of 1a (112 mg, 0.5 mmol) in THF (2 mL), and the mixture was gradually warmed to room temperature and stirred for 3 h. To this reaction mixture was added a solution of allyl bromide (65 μ L, 0.75 mmol) in THF (1 mL) and CuCl (5 mg, 0.05 mmol), and then the mixture was refluxed for 5 h. After the mixture was cooled to room temperature, 1 M HCl $(\ensuremath{\mathsf{aq}})$ was added, and the mixture was extracted with ether. The combined organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness under reduced pressure. The residue was purified by flash chromatography (*n*-hexane), and further purification was carried out by MPLC (n-hexane) to give 4a (70 mg, 88%).

1-(3-Butenyl)-2-vinylbenzene (4a). Colorless oil. IR (liquid film): 2937, 1641, 1484, 991, 911, 772, 753. ¹H NMR (CDCl₃, 300 MHz): δ 7.53–7.49 (1H, m), 7.26–7.15 (3H, m), 7.02 (1H, dd, J = 17.3, 10.8 Hz), 5.90 (1H, dddd, J = 17.0, 10.3, 6.7, 6.4 Hz), 5.68 (1H, dd, J = 17.3, 1.5 Hz), 5.33 (1H, dd, J = 10.8, 1.5 Hz), 5.12–4.99 (2H, m), 2.83–2.77 (2H, m), 2.39–2.31 (2H, m). ¹³C NMR (CDCl₃, 75.5 MHz): δ 139.0, 137.8, 136.2, 134.3, 129.3, 127.5, 126.1, 125.6, 115.3, 114.7, 35.2, 32.9. EI-MS (m/z): 158 (M⁺). Anal. Calcd for C₁₂H₁₄: C, 91.08; H, 8.92. Found: C, 91.06; H, 8.79.

Typical Procedure for Synthesis of (3-Butynyl)-Derivatives. To a solution of diisopropylamine (140 μ L, 1.0 mmol) in THF (5 mL) was added *n*-BuLi (1.6 M solution in *n*-hexane, 0.63 mL, 1.0 mmol) at 0 °C, and the mixture was stirred for 0.5 h at

⁽⁹⁾ Reaction of vinyl chloride derivative **4d** with sodium amide (4 equiv, THF-HMPA) or LDA (2 equiv, THF) gave a trace or a small amount of the desired ene-yne product **10**.

^{(10) (}a) Dane, E.; Eder, K. Liebigs Ann. Chem. **1939**, 539, 207. (b) Dane, E.; Schmitt, J. Liebigs Ann. Chem. **1938**, 536, 196. (c) Dane, E.; Schmitt, J. Liebigs Ann. Chem. **1939**, 537, 246.

⁽¹¹⁾ For recent examples on total synthesis of estrone using Dane's diene, see: (a) Hu, Q. Y.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. **2004**, *126*, 5984. (b) Tsogoeva, S. B.; Durner, G.; Bolte, M.; Gobel, M. Eur. J. Org. Chem. **2003**, 1661. (c) Tanaka, K.; Nakashima, H.; Taniguchi, T.; Ogasawara, K. Org. Lett. **2000**, *2*, 1915.

⁽¹²⁾ For recent reviews on enyne metathesis, see: (a) Diver, S. T.;
Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Poulsen, C, S.; Madsen, R. Synthesis 2003, 1. (c) Mori, M. Top. Organomet. Chem. 1998, 1, 133.
For reviews on olefin metathesis, see: (d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (e) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900. (f) Fürstner, A. Angew. Chem., Int. Ed. 2003, 42, 1900. (f) Fürstner, A. Angew. Chem., Int. Ed. 2003, 42, 1900. (f) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013. (g) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371. (h) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. For recent examples on intramolecular enyne metathesis, see: (i) Hansen, E. C.; Lee, D. Org. Lett. 2004, 6, 2035. (j) Brenneman, J. B.; Martin, S. F. Org. Lett. 2004, 6, 1329. (k) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2003, 125, 9582. (l) Kitamura, T.; Mori, M. Org. Lett. 2001, 3, 1161. (m) Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543. (n) Stragies, R.; Voigtmann, U.; Blechert, S. Tetrahedron Lett. 2000, 41, 5465.

⁽¹³⁾ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. **1999**, 1, 953.

the same temperature. To this solution was added a solution of **4e** (119 mg, 0.5 mmol) in THF (2 mL), and the mixture was gradually warmed to room temperature. After being stirred for 3 h at room temperature, the reaction mixture was quenched by 1 M HCl (aq) and extracted with ether. The combined organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness under reduced pressure. The residue was purified by flash chromatography (*n*-hexane), and further purification was carried out by MPLC (*n*-hexane) to give **10** (66 mg, 83%).

1-(3-Butynyl)-2-vinylbenzene (10). Colorless oil. IR (liquid film): 1484, 991, 915, 773, 640. ¹H NMR (CDCl₃, 300 MHz): δ 7.56–7.52 (1H, m), 7.29–7.23 (3H, m), 7.02 (1H, dd, J = 17.3, 1.1 Hz), 5.71 (1H, dd, J = 17.3, 1.5 Hz), 5.38 (1H, dd, J = 11.1, 1.5 Hz), 2.99 (2H, t, J = 7.8 Hz), 2.49 (2H, dt, J = 7.8, 2.6 Hz), 2.05 (1H, t, J = 2.6 Hz). ¹³C NMR (CDCl₃, 75.5 MHz): δ 137.4, 136.3, 134.0, 129.3, 127.6, 126.7, 125.8, 115.9, 83.7, 69.0, 32.5, 20.2. EI-MS (*m/z*): 156 (M⁺). Anal. Calcd for C₁₂H₁₂: C, 92.26; H, 7.74. Found: C, 92.26; H, 7.84.

Typical Procedure for Desilylation. To a solution of **7b** (129 mg, 0.5 mmol) in THF (5 mL) was added TBAF (about 1.0 M solution in THF, 0.75 mL, 0.75 mmol), and the mixture was stirred for 3 h at room temperature. The mixture was poured into water and extracted with ether. The combined organic layer was washed with brine and dried over anhydrous MgSO₄, and the filtrate was concentrated to dryness under reduced pressure. The residue was purified by column chromatography (*n*-hexane/ether = 50/1), and further purification was carried out by MPLC (*n*-hexane/ethyl acetate = 20/1) to give **12a** (89 mg, 96%).

2-(3-Butenyl)-1-ethynyl-4-methoxybenzene (12a). Colorless oil. IR (liquid film): 2102, 1607, 1495, 1241, 1161, 1039,

914, 811. ¹H NMR (CDCl₃, 300 MHz): δ 7.42 (1H, d, J = 8.2 Hz), 6.75–6.68 (2H, m), 5.88 (1H, dddd, J = 17.0, 10.3, 6.7, 6.4 Hz), 5.07 (1H, dd, J = 17.0, 1.7 Hz), 5.02–4.98 (1H, m), 3.81 (3H, s), 3.19 (1H, s), 2.88 (2H, t, J = 7.8 Hz), 2.46–2.37 (2H, m). ¹³C NMR (CDCl₃, 75.5 MHz): δ 159.6, 146.0, 137.8, 134.0, 114.8, 114.4, 113.6, 111.2, 82.3, 79.3, 55.3, 34.6, 34.3. EI-MS (m/z): 186 (M⁺). Anal. Calcd for C₁₃H₁₄O: C, 83.83; H, 7.58; O, 8.59. Found: C, 83.72; H, 7.39.

Typical Procedure for the Intramolecular Enyne Metathesis. To second-generation Grubbs catalyst (10.6 mg, 12.5 μ mol) was added a solution of **12a** (46.6 mg, 250 μ mol) in CH₂-Cl₂ (2.5 mL), and the mixture was stirred for 16 h at room temperature. After solvent was removed under reduced pressure, the residue was purified by column chromatography (*n*-hexane/ ether = 50/1) to give Dane's diene **13a** (35.1 mg, 75%). The structure was confirmed by comparison of spectral data with the authentic sample.¹⁴

Acknowledgment. The authors thank Sankyo Co., Ltd. for financial support.

Supporting Information Available: Experimental procedures and characterization data for products 4a-g, 7a-e, 10, 11, 12a,b, and 13a,b and for synthesis of starting materials 1a-c, 5a-c, and 6. This material is available free of charge via the Internet at http://pubs.acs.org.

JO048860B

⁽¹⁴⁾ Woski, S. A.; Koreeda, M. J. Org. Chem. 1992, 57, 5736.