Angewandte Corrigendum

Entry

The footnotes in Tables 1 and 2 of this communication were labeled incorrectly. The footnote for ECA yield should be changed to [c] (previously [d]) and the footnote corresponding to e.r. values should be changed to [d] (previously [e]). All yields are of isolated and purified products. In Table 1, entries 7 and 8 correspond to the only reactions for which catalyst **1**c was used. In Table 2, only entries 11 and 12 relate to transformations where catalyst precursor **1**a was utilized. The accurate versions of Tables 1 and 2 are provided below. The Supporting Information has been amended as well.

Table 1: Multicomponent catalytic reactions with $\beta\text{-alkenylaluminum reagents}.^{[a]}$

		conv. [%] ^[b]		ECA yield [%] ^[c]	
1	pMeOC ₆ H ₄ ;	> 98	3 b	40; 75	98:2
2	pBrC ₆ H ₄ ; C ₆ H ₅	>98	3 c	63;60	96:4
3	C ₆ H ₅ ; pMeOC₆H ₄	>98	3 d	80; 60	96.5:3.5
4	C ₆ H ₅ ; pF₃CC₆H₄	>98	3 e	80; 72	98:2
5	oMeOC ₆ H ₄ ; C ₆ H ₅	>98	3 f	80;60	98:2
6	C ₆ H ₅ ; 3-thienyl	>98	3 g	80; 54	96.5:3.5
7	Cy; C ₆ H ₅ ^[e]	>98	3 h	61; 51	97:3
8	CH ₂ C ₆ H ₅ ; C ₆ H ₅ ^[e]	>98	3 i	80; 55	90.5:9.5
9	C ₆ H₅; <mark>Cy</mark>	>98	3 j	80;60	94.5:5.5

[a] Reactions were performed under N₂ atmosphere; enones generated with > 98% *E* selectivity in all cases. [b] Determined by analysis of 400 MHz ¹H NMR spectra of unpurified mixtures ($\pm 2\%$). [c] Yield of isolated and purified products ($\pm 5\%$). [d] Determined by HPLC analysis; see the Supporting Information for details. [e] NHC-Ag complex **1c** was used as catalyst precursor.

Table 2: Multicomponent catalytic reactions with α -alkenylaluminum reagents.^[a]

	22 mol % [Cp ₂ ZrCl ₂] R ¹ + 0 Me ₃ Al Cl Me +	Zr-ca .0 mol % (dppp)Cl ₂] R ²	atalyzed car Ni-catalyzed NHC-Cu ((ECA perfo .0 h; otherw	boalumination/acylation d hydroalumination/ J-catalyzed ECA (with 1b) rrmed at -30 °C for ise, same as Scheme 2)	Me
Entry	R ¹ ; R ²	ECA conv. [%] ^[b]	Prod.	Carbomet./acyl. yield [%]; ^[c] ECA yield [%] ^[c]	e.r. ^[d]
1	C ₆ H ₅ ; C ₆ H ₅	>98	4a	80; 82	99:1
2	pMeOC ₆ H ₄ ; C ₆ H ₅	>98	4 b	40; 95	97.5:2.5
3	mFC ₆ H ₄ ; C ₆ H ₅	>98	4c	88;88	99:1
4	₀FC₅H₄; <mark>C₅H₅</mark>	88	4 d	60; 48	99:1
5	C ₆ H ₅ ; pMeOC₆H₄	>98	4e	80; 95	98:2
6	C ₆ H ₅ ; pF₃CC₆H₄	>98	4 f	80; 80	97:3
7	C ₆ H ₅ ; mF₃CC₆H₄	>98	4 g	80; 97	98:2
8	C ₆ H ₅ ; oFC₆H ₄	>98	4ĥ	80; 71	99:1
9	pMeOC ₆ H ₄ ; 3-thienyl	>98	4i	40; 81	98:2
10	pBrC ₆ H ₄ ; C ₆ H ₅	>98	4j	63; 95	99:1
11	(CH ₂) ₃ OTBS; C ₆ H ₅ ^[e]	>98	4 k	62; 87	95:5
12	CH ₂ C ₆ H ₅ ; C ₆ H ₅ ^[e]	>98	41	80; 85	97.5:2.5
13	Cy; <mark>C₆H</mark> 5	>98	4 m	61; 83	92:8

[a] Reactions were performed under N₂ atmosphere; enones generated with > 98% *E* selectivity in all cases. [b] Determined by analysis of 400 MHz ¹H NMR spectra of unpurified mixtures ($\pm 2\%$). [c] Yield of isolated and purified products ($\pm 5\%$). [d] Determined by HPLC analysis; see the Supporting Information for details. [e] NHC-Ag complex **1a** was used as catalyst precursor.

Angew. Chem. Int. Ed. 2014, 53, 10833–10847

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

A Multicomponent Ni-, Zr-, and Cu-Catalyzed Strategy for Enantioselective Synthesis of Alkenyl-Substituted Quaternary Carbons

K. P. McGrath, A. H. Hoveyda* _____ **1910–1914**

Angew. Chem. Int. Ed. 2014, 53

DOI: 10.1002/anie.201309456