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Utilization of transition metal imido complexes as reagents or
catalysts in organic synthesis is a topic of broad current interest.1–3

Among numerous reactivity patterns of multiple-bonded MdNR
functionality,1 the [2 + 2] cycloaddition with alkynes has received
considerable attention as a crucial C-N bond forming step in the
catalytic hydroamination of alkynes.3–6 While certain monomeric
imido complexes of group 4 and some neighboring metals have
proven effective for this type of transformation,4–6 few late
transition metal imido complexes have exhibited comparable
reactivity.7 We previously described the formation of a dinuclear
azametallacycle from the reaction of the 16-electron ruthenium
amido complex [Cp*Ru(µ2-NHPh)]2 (Cp* ) η5-C5Me5) with
diphenylacetylene, which likely proceeds via alkyne coordination
and aniline elimination followed by imido-alkyne cycloaddition.8

Exploring the scope of late transition metal imido complexes as
reagents for C-N bond formation,9 we here report the chemistry
of corresponding Cp*Rh amido and imido complexes, including
the synthesis of the divalent amido complex [Cp*Rh(µ2-NHPh)]2,
generation and alkyne cycloaddition of a transient imido species
[Cp*Rh(µ2-NPh)RhCp*], and X-ray structure determination of a
sterically protected imido complex [Cp*Rh(µ2-NAr)RhCp*] (Ar )
2,6-diisopropylphenyl).

Amido10 and imido7a,11 derivatives of Cp*M (M ) group 8-10
metals) fragments have been most commonly derived from the
corresponding Cp*M halides by displacement reactions.12 In this
study, we employed the Rh(II) chloride [Cp*RhCl]2 (1), reported
by Sharp and co-workers,13 as a starting material and prepared the
amido complexes 2-4 (Scheme 1) that can be used as precursors
to imido complexes. The violet dimeric amide 2 was obtained in
74% yield upon treatment of 1 with 2 equiv of LiNHPh in THF.
Heating the chloro dimer 1 with excess aniline in THF at 60 °C
resulted in the selective monosubstitution of a chloride ligand to
give the amido chloro complex 3 in 71% yield, which was then
converted to the amide methoxide 4 in 72% yield upon treatment
with NaOMe. Complexes 2-4 were isolated after extraction with
hexanes and identified by standard spectroscopic and analytical
methods; 2 was further defined by an X-ray diffraction which
revealed the nonplanar M2N2 core and equatorial phenyl groups
similar to those reported for [Cp*Ru(µ2-NHPh)]2.10e The Rh-Rh
distance of 2.6097(9) Å is comparable to that of 1 (2.617(1) Å)13

and is consistent with a single bond between the d7 Rh(II) centers.
An initial evidence that an imido species can be generated from

the amido complexes 2-4 was obtained by dehydrochlorination
of 3 with NaN(SiMe3)2 in the presence of PMe3 that afforded the
imido complex [Cp*Rh(µ2-NPh)Rh(PMe3)Cp*] (5) in 80% yield
(Scheme 2). This compound is an analogue of the iridium imido
complex [Cp*Ir(µ2-NPh)Ir(PMe3)Cp*] reported by Dobbs and
Bergman as a product of imido transfer reaction from [Cp*Ir(µ2-
NPh)]2 to PMe3.11f Analogous deprotonation of 3 in the presence
of diphenylacetylene resulted in the formation of a dinuclear

azametallacycle 6a in 78% yield (Scheme 2). It seems likely that
6a is formed by alkyne cycloaddition to a transiently generated
imido species [Cp*Rh(µ2-NPh)RhCp*], since 3 did not react with
diphenylacetylene in the absence of the base under comparable
reaction conditions (THF, 25 °C, 12 h). With terminal acetylenes,
tert-butylacetylene and para-tolylacetylene, the cycloaddition pro-
ceeded regioselectively to give the Markovnikov adducts 6b (85%
yield) and 6c (91% yield), respectively. The structure of 6a has
been determined by X-ray crystallography. Although terminal CPh
and NPh groups in the bridging azapropenylidene ligand PhCCPh-
NPh are disordered, solved structure clearly shows the unsym-
metrical η2:η3 bonding, which markedly contrasts to the symmetri-
cal η3:η3 bonded structure of the diruthenium complex [(Cp*Ru)2(µ2-
η3:η3-PhCCPhNPh)].8 A fluxional behavior of the azametallacycles

Scheme 1. Synthesis of [(Cp*Rh)2(µ2-NHPh)(µ2-X)] (2-4)

Scheme 2. Generation, PMe3 Trapping, and Alkyne Cycloaddition
of a Dirhodium Imido Species [Cp*Rh(µ2-NPh)RhCp*]
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6a-c was suggested by their 1H NMR spectra. For example, in
THF-d8 at -90 °C complex 6a showed two inequivalent Cp* methyl
resonances that coalesced into one sharp singlet as the temperature
was raised. This can be accounted for by assuming a rapid flipping
of the bridging azapropenylidene moiety between the two Rh
centers.

The azametallacycle 6a was also formed in 47% yield from the
bis-amide 2 with elimination of 1 equiv of aniline when 2 was
heated at 120 °C for 7 days in the presence of 10 equiv of
diphenylacetylene (eq 1). The amide methoxide 4 more smoothly
reacted with the same alkyne (1 equiv, 60 °C 18 h) to give 6a in
98% yield. A preliminary kinetic estimation revealed that the rate
of formation of 6a is first order in the concentration of 4 with little
dependence of kobs values on the concentration of alkyne (4.3 (
1.0 × 10-5 s-1 in the presence of 10-30 equiv of alkyne in C6D6

at 50 °C), which again points to a dissociative pathway involving
the imido intermediate [Cp*Rh(µ2-NPh)RhCp*].

Use of a sterically hindered arylimido ligand allowed isolation
of an unsaturated imido complex relevant to the above-postulated
imido intermediate. Treatment of 1 with 2 equiv of LiNHAr (Ar )
2,6-diisopropylphenyl) afforded the singly bridged imido complex
[Cp*Rh(µ2-NAr)RhCp*] (7), which was isolated in 64% yield and
crystallographically characterized (Scheme 3). The molecule con-
tains a triangular Rh2N core surrounded by the bulky Cp* and Ar
groups. The planar arrangement around nitrogen and the short
Rh-N distances (1.8946(18) and 1.8969(19) Å) indicate delocalized
Rh-N multiple bonding interactions.8,11 The Rh-Rh distance of
2.5190(7) Å is consistent with a Rh-Rh single bond with which
each rhodium center would attain a formal 16-electron configuration.
While 7 did not react with diphenylacetylene or tert-butylacetylene,
it reacts instantaneously with tert-butyl isocyanide to give the adduct
[Cp*Rh(t-BuNC)(µ2-NAr)RhCp*] (8; 63% yield), in which the
terminal isocyanide ligand rapidly migrates between the two Rh
centers as evidenced by a single-crystal X-ray and variable
temperature NMR studies.

In summary, the amido complexes 2-4 provided a chemistry
attributable to a reactive imido species [Cp*Rh(µ2-NPh)RhCp*]
including a formal [2 + 2] cycloaddition reaction with unactivated
alkynes. With the use of a sterically hindered arylimido ligand, a
relevant coordinatively unsaturated imidodihodium complex was
isolated and structurally characterized. Efforts will be directed
toward detailed investigation of this system including catalytic
alkyne hydroamination by an imido mechanism.4
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