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The antitumor antibiotic FR900482 (1) was isolated from
Streptomyces sandaensis No. 6897 by Imanaka et al. at the
Fujisawa Pharmaceutical Co.[1] Biological studies have re-
vealed that this and the related compounds exhibit the same
level of antitumor activities as mitomycin C (2).[2] Extensive
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investigations of the structure±activity relationships and its
mode of action have revealed that this class of compounds
crosslink DNA in a fashion analogous to mitomycin C.[3] In
addition to these promising biological activities, the structure
of 1 featuring the unique hydroxylamine hemiacetal has made
it an attractive target for synthetic chemists. Although
numerous approaches[4] have been explored to construct this
densely functionalized structure, only three total syntheses[5,6]

and a formal total synthesis[7] have been reported to date.[8]

After the completion of our first total synthesis of racemic
1,[5a] we have devoted continuous efforts to establish a more
efficient route to prepare the optically active FR900482 (1).[9]

We report herein a stereocontrolled, enantioselective total
synthesis of 1 through a facile construction of the
N-hydroxybenzazocine intermediate.

Our synthetic plan is outlined in Scheme 1. For the
construction of the key intermediate N-hydroxybenzazocine
4, we planned to exploit intramolecular reductive hydroxyla-
mination of a fully functionalized w-formyl nitrobenzene
derivative 5. Hydroxymethylation and subsequent hydroxyl-
amine hemiacetal formation would lead to the pentacyclic
intermediate 3 in our racemic total synthesis. Cyclization
precursor 5 would be accessible from aryl acetylene 6, which
in turn would be obtained by coupling of the aromatic
fragment 7 and the terminal acetylene 8.

Preparation of the epoxy alcohol precursor 18 commenced
with Sonogashira-coupling of acetylene 9[10] and aryl triflate
10[5b] to provide aryl acetylene 11 (Scheme 2).[11,12] At this
juncture, it was necessary to devise a regioselective trans-

formation of the acetylene into the required ketone under
mild conditions. To this end, we developed a novel conjugate
addition of secondary amines to ortho-nitroaryl acetylenes.
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Scheme 1. Retrosynthesis of FR900482 (1). Bn ¼ benzyl, MP ¼ p-
methoxyphenyl.
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Scheme 2. Synthesis of epoxy alcohol 18. a) [Pd(OAc)2] (0.1 equiv), PPh3

(0.2 equiv), THF/NEt3 (2:1 v/v), 65 8C, 1 h, then room temperature, 12 h,
75%; b) pyrrolidine (2 equiv), benzene, room temperature, 1 h, then
aqueous AcOH (50%), room temperature, 2 h; c) Zn(BH4)2 (1.2 equiv),
Et2O, �30 8C, 3 h, 94% (2 steps), 9:1 diastereoselectivity; d) TIPSOTf
(3 equiv), 2,6-lutidine (6 equiv), CH2Cl2, room temperature, 7 h; e) AcOH/
H2O (5:1 v/v), 100 8C, 4 h, 61% (2 steps); f) TBSCl (1.2 equiv), NEt3
(2.4 equiv), DMAP (0.1 equiv), CH2Cl2, room temperature, 13 h; g) TsCl
(1.2 equiv), DABCO (2 equiv), CH2Cl2, room temperature, 1.5 h; h) NaH
(1.5 equiv), DMF, 0 8C!RT, 0.5 h, 76% (3 steps); i) CSA (0.1 equiv),
MeOH, room temperature, 1 h. TIPS ¼ triisopropylsilyl, OTf ¼
trifluoromethanesulfonate, TBS ¼ tert-butyldimethylsilyl ; DMAP ¼ 4-
dimethylaminopyridine, Ts ¼ p-toluenesulfonyl, DABCO ¼ 1,4-diazabi-
cyclo[2.2.2]octane, DMF ¼ N,N-dimethylformamide, CSA ¼ 10-cam-
phorsulfonic acid.



Thus, addition of pyrrolidine proceeded smoothly at room
temperature to furnish intermediate enamine 12, which upon
treatment with AcOH/H2O (50%) in a one-pot procedure
gave the desired ketone 13 in excellent yield. After stereo-
selective reduction of the ketone[13] and protection of the
resultant alcohol, both the acetonide and the TBS group were
removed by heating in aqueous acetic acid to give triol 14. The
desired epoxide was then obtained by a three-step sequence:
TBS protection of the primary alcohol, tosylation of the
sterically less-hindered secondary alcohol,[14] and treatment
with NaH. Finally, selective deprotection of the TBS group
afforded epoxy alcohol 18.

Having synthesized epoxy alcohol 18 in a straightforward
manner, we then focused on the facile construction of the
N-hydroxybenzazocine 19. Alcohol 18 was oxidized with
Dess±Martin periodinane to the corresponding aldehyde,
which was then subjected to a variety of reductive conditions
for construction of the desired N-hydroxybenzazocine. After
numerous attempts, we found that catalytic hydrogenation
over Pt/C (5%) in MeOH cleanly afforded N-hydroxybenza-
zocine 19 as the sole product (89% overall yield from 17). No
product of further reduction was observed during the hydro-
genation. Protection of the hydroxylamine of 19 as the
1-methoxy-1-methylethyl ether followed by deprotection of
the TIPS group, and Swern oxidation furnished ketone 20
(Scheme 3).

For the ensuing hydroxymethylation and hemiacetal for-
mation, we developed a sequential one-pot procedure.
Hydroxymethylation was best effected by treatment of ketone
20 with formalin in the presence of a catalytic amount of
LiOH to furnish the desired 21 with high diastereoselectivity
(94:6).[15] Acidification of the reaction mixture with HCl (1n)
afforded hemiacetal 22,[16] which was subjected to acetonide-
formation conditions to give the pentacyclic compound 23 in
56% yield from ketone 20.[17] Acetonide 23 was then reduced
with DIBAL, and the resultant benzyl alcohol 24 was
protected as the p-methoxyphenyl ether to give the pentacy-
clic compound 3.

With the key intermediate 3 in hand, we completed the total
synthesis of optically active FR900482 (1) by modifying the
protocol established during our racemic synthesis.[5a] Thus,
regioselective opening of the epoxide 3 with LiN3 and
mesylation of the resultant alcohol gave acetonide 25
(Scheme 4). Conversion of 25 into hydroxy carbonate 26
was effected by a three-step sequence involving acidic
hydrolysis of the acetonide, treatment with triphosgene, and
deprotection of the p-methoxyphenyl group with ceric
ammonium nitrate.[18] The resultant alcohol 26 was oxidized
to the aldehyde, which was protected as the dimethyl acetal.[19]

After formation of the aziridine by heating with PPh3 in the
presence of iPr2NEt, hydrogenolysis of the benzyl ether
followed by treatment with HClO4 in THF/H2O afforded
aldehyde 28. Finally, ammonolysis of the cyclic carbonate
provided exclusively the desired FR900482 (1), whose spec-
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Scheme 3. Construction of the pentacyclic compound 3. a) Dess±Martin
periodinane (1.4 equiv), CH2Cl2, 0 8C!RT, 0.5 h; b) H2 (1 atm), Pt/C (5%;
15 wt%), MeOH, room temperature, 2 h, 89% (from 17); c) 2-methoxy-
propene (22 equiv), TsOH¥H2O (0.1 equiv), CH2Cl2, room temperature,
10 min; d) TBAF (3.5 equiv), THF, room temperature, 12 h, 85% (2 steps);
e) (COCl)2 (2 equiv), DMSO (4 equiv), CH2Cl2, �78 8C, 0.5 h, then NEt3
(6 equiv), �78 8C!RT, 0.5 h, 82%; f) aqueous HCHO (37%; 115 equiv),
LiOH (0.4 equiv), THF/H2O (20:3 v/v), 0 8C, 5 h, then HCl (1n ; 2 equiv),
0 8C!RT, 14 h; g) 2-methoxypropene (5 equiv), PPTS (0.1 equiv), 2,2-
dimethoxypropane/acetone (1:1 v/v), room temperature, 3 h; separation of
the isomers, 56% (from 20); h) DIBAL (3 equiv), CH2Cl2, �78 8C, 1 h,
99%; i) 4-methoxyphenol (2 equiv), PPh3 (2 equiv), DEAD (2 equiv),
benzene, room temperature, 15 min, 96%. TBAF¼ tetrabutylammonium
fluoride, DMSO ¼ dimethyl sulfoxide, PPTS ¼ pyridinium p-toluenesul-
fonate, DIBAL ¼ diisobutylaluminum hydride, DEAD ¼ diethyl
azodicarboxylate.
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Scheme 4. Completion of the total synthesis of 1. a) LiN3 (27 equiv), DMF/
H2O (10:1 v/v), 120 8C, 3.5 h, 83%; b) MsCl (2 equiv), NEt3 (3 equiv),
CH2Cl2, room temperature, 2.5 h, 80%; c) TFA (8 equiv), CH2Cl2, room
temperature, 3 h; d) (Cl3CO)2C¼O (5 equiv), pyridine (6 equiv), CH2Cl2,
0 8C, 30 min, 92% (2 steps); e) (NH4)2Ce(NO3)6 (2.5 equiv), MeCN/H2O
(4:1 v/v), room temperature, 10 min, 84%; f) PCC (2 equiv), MgSO4

(4 equiv), CH2Cl2, room temperature, 1.5 h; g) CSA (0.08 equiv),
CH(OMe)3/MeOH (1:4 v/v), room temperature, 1 h, 81% (2 steps);
h) PPh3 (2 equiv), iPr2NEt (1.2 equiv), THF/H2O (10:1 v/v), 60 8C, 1.5 h,
85%; i) H2 (1 atm), Pd/C (10%; 15 wt%), EtOH, room temperature, 2.5 h;
j) HClO4 (1%; 0.2 equiv), THF/H2O (10:1 v/v), room temperature, 5 h;
k) NH3 (gas), THF, room temperature, 3 h, 89% (3 steps). Ms ¼
methanesulfonyl, TFA ¼ trifluoroacetic acid, PCC ¼ pyridinium chloro-
chromate.



Total Synthesis of (� )-FR66979**

Richard Ducray and Marco A. Ciufolini*

In the late 1980s, scientists at the Fujisawa Co. (Japan)
unveiled a new class of antitumor agents with general
structure 1 (Scheme 1).[1] These substances, denoted FR-
66979 (1a) and FR-900482 (1b), are structurally related to the
mitomycins (see mitomycin C (2)).[2] Indeed, the two families
of anticancer agents possess comparable bioactivity[3] and are
believed to act by a similar mechanism, yet FR-type
compounds are less toxic than mitomycins, probably as a
result of the absence of a quinoid nucleus.[4] Derivatives of 1b
are currently undergoing clinical trials.[5]

The biomedical potential and unusual architecture of
compounds 1 have stimulated substantial interest at a
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tral data were completely identical with those reported in
literature.[1b]

In conclusion, we have completed a highly efficient total
synthesis of FR900482 (1). The present synthesis features a
facile formation of N-hydroxybenzazocine by intramolecular
reductive hydroxylamination and an ensuing facile construc-
tion of the hydroxylamine hemiacetal. The synthetic strategy
described above should be applicable to the synthesis of
analogues of FR900482 as well as of other benzazocine
derivatives. Application of this approach to the synthesis of
mitomycin C is currently under investigation in our laborato-
ries.
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