

PII: S0040-4039(97)00144-5

Asymmetric Endoselective [4+2] Heterocycloadditions of Styrene Dienophiles with Chiral Benzylidenepyruvic Esters. Total Synthesis of (-)-O-Dimethylsugiresinol

Gilles Dujardin, Mickaël Maudet and Eric Brown

Laboratoire de Synthèse Organique (associé au CNRS), Faculté des Sciences, Avenue Olivier Messiaen, BP 535, F-72017 Le Mans, France

Abstract : Eu(fod)3 catalyzed [4+2] heterocycloadditions of para-methoxystyrene 7 with esters 8a-f of benzylidenepyruvic acids (deriving from various chiral alcohols) furnished endo adducts 9a-f with variable diastereoselective ratios (from 58/42 to 86/14). Interestingly, the benzylidenepyruvic esters 8g and 8h, deriving from a new chiral vector, the α -O-silyl ether 6 of (D)-(-)-erythronolactone 5, gave the corresponding endo adducts 9g and 9h with a high diastereoselective ratio ($dr \ge 95/5$). The adduct 9h was used as a precursor in a five-step synthesis of "natural" (-)-dimethylsugiresinol (1b).

© 1997 Published by Elsevier Science Ltd. All rights reserved.

Heterocyclic Diels-Alder reactions involving α,β -ethylenic carbonyl compounds (as electron-deficient heterodienes) and electron-rich dienophiles such as vinyl ethers are well documented. 1 However, there are still relatively few known examples of inverse type heterocycloadditions of 1-oxabutadienes with styrenic compounds of lower dienophilicity.² Despite the synthetic potential of this approach (in the C-aryl glycoside chemistry for instance), only two cases of such heterocycloadditions are reported in the asymmetric series. Thus, high pressure cycloaddition of a chiral β -acyloxy- α -phenylthio- α -enone with 3,4-dimethoxystyrene was described, leading to the corresponding endo adduct in 81% yield with a diastereofacial ratio 3/1.³ Very recently, it was found that (S)-(+)-3-p-tolylsulfinylbut-3-en-2-one reacted with styrenes and furnished cycloadducts having de's>90%.⁴ In 1994, we described high yield endoselective racemic heterocycloadditions involving benzylidenepyruvic esters as the heterodiene and an alkoxystyrene as the dienophile, using Eu(fod)3 as a catalyst.² As part of a program pertaining to the asymmetric total synthesis of lignans of the sugiresinol (1a) series, we investigated an asymmetric version of the above synthetic strategy.

Thus, esterification of the benzylidenepyruvic acids 2 and 3^2 with (-)-menthol in toluene and in the presence of TsOH, with azeotropic distillation of the water formed, afforded good yields of the corresponding chiral esters $8a,b^5$ (Scheme 1). This method failed in the case of the 8-phenylmenthyl analogue $8c.^5$ However this heterodiene was satisfactorily prepared by a known transesterification method⁶ starting from the methyl ester of benzylidenepyruvic acid 2. Using DCC as a dehydrating agent, in the presence of DMAP and in CH₂Cl₂ at 0°C, the acid 3 was esterified with either dimethyl (S)-malate or (R)-pantolactone 4, thus giving the corresponding esters $8d,e.^5$ The ester $8f^5$ was similarly obtained from the acid 3 and (R)-pantolactone 4.

The chiral heterodienes **8a-f** were next treated with 1.2-2.2 equ. of the styrene 7 and in the presence of the catalyst Eu(fod)3, and thus led to the corresponding cycloadducts **9a-f**⁵ (see Table). The Table shows that the *endo/exo* selectivity of the cycloaddition is generally excellent (> 94/6 in most cases). With regards to the diastereofacial selectivity of the reaction in the case of the major *endo* diastereomers, the best results so far were obtained when using (-)-8-phenylmenthol (entry 3) and (R)-pantolactone 4 (entries 5 and 6) as chiral inducers. The highest diastereofacial excess (72%, dr = 86/14) was observed for the adduct **9e** (95% yield) deriving from (R)-pantolactone 4. Incidentally, the Table shows that the heterodiene 8 is less reactive towards cycloaddition with the styrene 7 when it is *para*-substituted with a methoxy group (entries 2 and 6).

At this stage, we looked for another chiral and rigid inducer, similar to pantolactone 4 but bearing a second stereogenic centre liable to interact efficiently with the heterodiene moiety during cycloaddition. We thus contemplated using a derivative of (D)-(-)-erythronolactone 5. Indeed, the latter is readily available in one step and on a multigram scale from commercially cheap (D)-(-)-isoascorbic acid.⁷ O-Silylation of (-)-erythronolactone 5 in standard conditions (1.1 equ. t-BuPh2SiCl/1.1 equ. imidazole/DMF/RT/48h) gave a mixture of three O-silyl products, from which the major α -O-substituted derivative 6⁵ was crystallized in 68% yield, upon dilution of the reaction medium with ether followed by petrol ether. Esterification of the acids 2 and 3 with the alcohol 6 (1.5 equ. DCC/DMAP/CH₂Cl₂/5h at 0°C, then 10h at RT) gave high yields of the chiral heterodienes 8g and 8h.⁵ Reaction of the latter with *p*-methoxystyrene 7 (3 equ.) in the presence of 10% molar equ. of Eu(fod)₃, as shown in the Table, gave the *endo* adducts 9g and 9h⁵ in good yields after chromatography, with high *endo/exo* selectivity (>97/3) and diastereofacial selectivity (96/4 and 95/5, respectively). The absolute (2R, 4R) configuration of the major cycloadduct 9h was determined by its further transformation into (-)-O-dimethylsugiresinol (-)-1b⁸ in the following manner (Scheme 2).

Transesterification of the adduct **9h** with methanol (in the presence of LiOH) gave the methyl ester (+)-**10** (ee. 93%). Catalytic hydrogenation of the latter over 10% Pd-C almost quantitatively afforded the tetrahydropyran (+)-**11** as a single diastereomer, which was next saponified (NaOH/H₂O/THF) to the free carboxylic acid (+)-**12**. Oxidation by means of *m*-CPBA and DCC according to Shiozaki's procedure,⁹ followed by basic β -elimination of *m*-chlorobenzoic acid, degraded the acid (+)-**12** to the requisite dihydropyran (+)-**13** (44% yield of enantiopure product). Finally, standard hydroboration-oxidation of the dihydropyran (+)-**13** gave, as the main isolated product, enantiomerically pure "natural" (-)-(2R,4S,5S)-O-dimethylsugiresinol (-)-**1b**, in 12% overall yield from *p*-methoxybenzylidenepyruvic acid **3**. The synthetic compound (-)-**1b** had mp, [α]D and spectral data in full agreement with those reported in the literature for the dimethyl ether (-)-**1b** deriving from natural sources.⁸

			Resulting adducts 9a-h :		
Entry	Diene	Cyclization	Yield	Endo/exo	Diastereofacial
	8a-h ^a	Conditions ⁽⁾	(%)	selectivity	ratio c)
1	a	Hex/60°C/5d	95	> 97/3	65/35
2	b	Hex/60°C/5d	88	> 97/3	60/40
3	c	Hex/60°C/3d	95	88/12	80/20
4	d	Tol/110°C/7d	45	92/8	58/42
5	e	Hex/60°C/2d	95	> 97/3	86/14
6	f	Hex/60°C/2d	(< 10)		
		+ Tol/110°C/5d	66	94/6	73/27
7	g	Hex/60°C/3d			
		+ Tol/60°C/3d	75	> 97/3	96/4
8	h	Hex/60°C/3d			
	[+ Tol/60°C/3d	76	> 97/3	95/5

a) See Scheme 1. b) Hex, hexane, ; Tol, toluene ; d, days. c) dr's of corresponding pairs of *endo* diastereomers.

Table : Syntheses of adducts 9a-h by heterocycloaddition of chiral benzylidenepyruvic esters 8a-h with the styrene 7, catalyzed by Eu(fod)3.

Conclusion

We have carried out the asymmetric cycloaddition of *para*-methoxystyrene 7 with benzylidenepyruvic esters **8a-h** deriving from usual chiral alcohols. In most cases the *endo* selectivity was high (*endo/exo* ratio >97/3). The highest diastereofacial selectivities were observed when using 8-phenylmenthol and (R)pantolactone 4 as chiral alcohols (dr = 80/20 and 86/14, respectively). A much higher diastereofacial selectivity (dr = 96/4) was observed when the chiral alcohol was the α -O-silyl ether 6 of (D)-(-)-erythronolactone 5. The resulting adduct 9h was successfully used in a five-step synthesis of (-)-dimethylsugiresinol (1b). Further studies are in progress in our laboratory in order to determine the scope of the new chiral vector 6.

References and notes

- 1. Dujardin, G.; Rossignol, S.; Molato, S.; Brown, E. Tetrahedron 1994, 30, 9037-50, and ref. therein.
- 2. Dujardin, G.; Maudet, M.; Brown, E.Tetrahedron Lett. 1994, 35, 8619-22, and ref. therein.
- 3. Schmidt, R.R.; Frich, W.; Haag-Zeino, B.; Apparao, S. Tetrahedron Lett. 1987, 28, 4045-8.
- 4. Hayes, P.; Dujardin, G.; Maignan, C. Tetrahedron Lett. 1996, 37, 3687-90.
- 5. Physical properties and yields of compounds 6, white solid, m.p. 168-173°C, [α]D + 32 (c 1, acetone), ca. 70%; 8a, yellow solid, m.p. 44°C (ether), [α]D -57 (c 1, ether), 79%; 8b, yellow solid, m.p. 110°C (ether), [α]D -39.6 (c 1.3, acetone), 80%; 8c, see reference 6; 8d, orange oil, [α]D -13.2 (c 1.4, acetone), 51%; 8e, pale yellow crystals, m.p. 98.5°C (ether), [α]D +30.6 (c 0.8, acetone), 95%; 8f, yellow crystals, m.p. 118-121°C, [α]D + 33 (c 1, acetone), 67%; 8g, yellow crystals, m.p. 52-55°C, [α]D 59 (c 2, acetone), 95%; 8h, oil, [α]D 69 (c 2, acetone), 95%; 9a, m.p. 41-44°C (diastereomeric mixture), 95%; 9b, m.p. 124.5-125.5°C (AcOEt/Pet. ether) (diastereomeric mixture), 88%; 9c, m.p. 55-58°C (diastereomeric mixture), 95%; 9d, orange oil (diastereomeric mixture) 45%; 9e, m.p. 142-142.5°C (AcOEt), [α]D -62.5 (c 1, acetone), 95%; 9f, m.p. 159-160°C (AcOEt) (diastereomeric mixture), 66%; 9g, white solid, m.p. 70-74°C (diastereomeric mixture) 75%; 9h, yellow solid, m.p. 75-80°C, [α]D + 105 (c 0.8, acetone) (diastereomeric mixture), 76%; 10, white solid, m.p. 79-80°C, [α]D + 134 (c 0.9, acetone) 90%; 11, oil, [α]D + 16.6 (c 0.7, acetone), 97%; 12, white solid, m.p. 140-141°C, [α]D + 25 (c 0.6, acetone), 86%; 13, white solid, m.p. 79-80°C, [α]D + 133 (c 1.0, acetone), 44%; 1b, e.e. > 97% [¹H NMR at 400 MHz with Eu(hfc)3 as chiral shift reagent], white solid, m.p. 99-100°C, [α]D -4 (c 1.0, CHCl₃), 45%.
- 6. Sugimura, H.; Yoshida, K. J. Org. Chem. 1993, 58, 4484-6.
- 7. Cohen, N.; Banner, B.L.; Laurenzano, A.J.; Carozza, L. Organic Syntheses 1985, 63, 127-35.
- 8. Muraoka, O.; Zheng, B.Z.; Fujiwara, N.; Tanabe, G.J. Chem. Soc., Perkin Trans. I 1996, 405-11, and ref. therein.
- 9. Shiozaki, M. J. Org. Chem. 1991, 56, 528-32.

(Received in France 15 January 1997)