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Abstract: The first highly efficient asymmetric ep-
oxidation of 2-cyclopentenones has been developed.
Using a newly designed and readily available Cin-
chona amine catalyst, 2-cyclopentenones are react-
ed with hydrogen peroxide to give the correspond-
ing epoxycyclopentanones in high yields and excel-
lent enantioselectivities.
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The impact of alkene epoxidation catalysis to modern
academic and industrial chemistry can hardly be over-
stated. In particular, the catalytic enantioselective ep-
oxidation of alkenes has fascinated chemists during
the past three decades. Originating from Sharpless�
seminal discovery of the catalytic asymmetric epoxi-
dation of allylic alcohols,[1] intensive research to
expand the scope of this transformation to other
olefin classes began. Important contributions to this
endeavour came from Jacobsen,[2] Katsuki,[3] Shi,[4]

Juli� and Colonna,[5] Wynberg,[6] Jackson,[7] Enders,[8]

Shibasaki,[9] and many more.[10] With the advent of
aminocatalysis at the beginning of the last decade,[11]

new opportunities for the epoxidation of a,b-unsatu-
rated carbonyl compounds arose and Jørgensen[12]

and subsequently MacMillan[13] and our group[14] have
developed secondary amine-based catalysts for the
asymmetric epoxidation of a,b-unsaturated aldehydes.
Recently, our group has expanded the scope of such
aminocatalytic epoxidations by introducing powerful
Cinchona-derived primary amine-catalyzed epoxida-
tions of cyclic and acyclic enones as well as of a-
branched, a,b-unsaturated aldehydes.[15] Remarkably
though, one substrate class has remained almost en-
tirely unaffected by all previous efforts: 2-cyclopent-ACHTUNGTRENNUNGenones. To the best of our knowledge, only two at-
tempts for the asymmetric epoxidation of 2-cyclopen-
tenones have been reported: The Laschat group has

used an enantiomerically pure peroxide reagent in the
epoxidation of 2-cyclopentenone to obtain the prod-
uct in 31% yield and 12% ee.[16] The single published
attempt at asymmetric catalysis of this reaction came
from our own group using a chiral primary amine salt
(DPEN-TRIP) and hydrogen peroxide, giving the ep-
oxide in 33% yield and 78% ee.[15a,17] One problem
connected to cyclopentenone substrates is their con-
siderable “flatness”, rendering them less sensitive to
the steric requirements of a chiral catalyst. In fact,
asymmetric conjugate additions to 2-cyclopentenones
via iminium catalysis are considered to be challenging
in general.[18] The absence of efficient and highly
enantioselective methods for the asymmetric epoxida-
tion of cyclopentenones is particularly poignant in
light of the wealth of bioactive natural products pos-
sessing a chiral epoxycyclopentanone (for selected ex-
amples, see Scheme 1). Here we report a new modi-
fied Cinchona-derived primary amine catalyst that
provides the first solution to this equally important
and challenging problem.

Recently, we have introduced a new class of quino-
line C-2’-substituted Cinchona-derived primary amine
catalysts, which are directly accessible via protecting
group-free addition of an organometallic reagent and
in situ oxidation. One of these amines enabled us to
develop the first catalytic asymmetric Knoevenagel
condensation.[19] Encouraged by this work and our
continuing interest in aminocatalytic Weitz–Scheffer
epoxidations, we wondered how our new catalyst class
would perform in the asymmetric epoxidation of cy-
clopentenones. Initial catalyst evaluation studies are
shown in Table 1. We first tested the unmodified qui-
nine-derived aminocatalyst in the presence of differ-
ent standard acid co-catalysts (1a–1c). With hydrogen
peroxide, these salts converted 2-cyclopentenone 2a
into the corresponding epoxide 3a in moderate yields
and enantioselectivities (entries 1–3). After screening
various acid additives, we were pleased to find that
(R)-Mosher�s acid was beneficial to our reaction
system. Interestingly, (R)-Mosher�s acid indeed im-
proved both the yield and enantioselectivity (entry 4).
We next evaluated our newly synthesized modified
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catalysts 1e–1i in the presence of (R)-Mosher�s acid
(entries 6–11). Excitingly, of these salts, phenyl-modi-
fied catalyst 1h gave product 3a in 90% yield and
high enantioselectivity (er =95:5) (entry 9). Using (S)-

Mosher�s acid instead of its (R)-enantiomer did not
diminish catalyst reactivity and only slightly reduced
the enantiomeric ratio (entry 10).

Scheme 1. Epoxycyclopentanone incorporating natural products and absence of enantioselective 2-cyclopentenone epoxida-
tions.

Table 1. Catalyst evaluation.[a]

Entry Catalyst Yield [%][b] e.r[c]

1 1a 33 87.0:13.0
2 1b 50 89.0:11.0
3 1c 61 89.0:11.0
4 1d 85 91.5:8.5
5[d] 1d 88 92.5:7.5
6[d] 1e 64 93.0:7.0
7[d] 1f 60 83.5:16.5
8[d] 1g 60 92.5:7.5
9[d] 1h 90 95.0:5.0
10[d,e] 1h 90 94.5:5.5
11[d] 1i 60 92.5:7.5

[a] Reaction conditions : 2a (0.1 mmol), hydrogen peroxide (50% aqueous solution, 0.15 mmol), catalyst 1 (0.01 mmol), acid
co-catalyst (0.02 mmol), 1,4-dioxane (0.4 mL).

[b] Determined by GC-MS.
[c] Determined by GC analysis on a chiral stationary phase.
[d] Reaction was carried out for 168 h at room temperature.
[e] (S)-Mosher�s acid was used.
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Table 2. Substrate scope.[a]

Entry Substrate Product Yield [%][b] er [%][c]

1 87 95:5

2 89 95.5:4.5

3 85 96:4

4 86 95.5:4.5

5 65 96:4

6 90 95.5:4.5

7 90 96:4

8 90 96.5:3.5

9 88 95.5:4.5

10 84 97.5:2.5
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It turned out that catalyst 1h is a fairly general cat-
alyst that can be used in the epoxidation of various
substituted 2-cyclopentenones under optimized condi-
tions (Table 2). For example, methyl (entry 2) and
linear alkyl chains at the 3-position are tolerated very
well (entries 3 and 6). But even cyclopentenones that
possess branched alkyl groups such as i-Pr, i-Bu, or t-
Bu at this critical position furnish the corresponding
epoxides in good yields and high enantioselectivities
(entries 4, 5, 7, 9 and 16). The robustness of our reac-
tion to sterical hindrance is further illustrated with
the smooth conversion of substrate 2h containing
a quaternary center within the ring adjacent to the re-
acting carbon atom (entry 8). Excellent enantioselec-
tivities were also obtained with 3-benzyl-substituted
cyclopentenones (entries 10–15). Both electron-defi-
cient (entry 12) and electron-rich (entries 11 and 13)
aromatic substituents gave the desired products in ex-
cellent enantioselectivities. Furthermore, ortho-, meta-

and para-substituted arenes can all be used with simi-
larly high efficiency (entries 13–15).

To illustrate the synthetic utility of our reaction, we
synthesized the highly potent antibacterial epoxide 4
(Scheme 2) This compound [(2S,3S)-2-nor-epoxy-
methylenomycin B] has been discovered in the con-
text of structure/activity elucidations of the methy-ACHTUNGTRENNUNGlenomycins and displays particularly strong antibacte-
rial activity against E. coli and B. subtilis.[20] The intro-

Table 2. (Continued)

Entry Substrate Product Yield [%][b] er [%][c]

11 82 97.5:2.5

12 80 97.5:2.5

13 80 97.5:2.5

14 78 97.5:2.5

15 65 98:2

16 84 96:4

[a] 2 (0.2 mmol), hydrogen peroxide (50% aqueous solution, 0.3 mmol), catalyst 1h (0.02 mmol), (R)-Mosher�s acid
(0.04 mmol), 1,4-dioxane (0.8 mL).

[b] Yield of isolated product.
[c] Determined by GC analysis on a chiral stationary phase.

Scheme 2. First asymmetric synthesis of antibacterial agent
(2S,3S)-2-nor-epoxy-methylenomycin B (4).
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duction of the methylene functionality at C-5 was
achieved through a straightforward one-pot proce-
dure. Our approach represents the first asymmetric
synthesis of epoxide 4, which was obtained from prod-
uct 3b without loss of enantiomeric purity.

In conclusion, the first highly efficient and general
asymmetric epoxidation of 2-cyclopentenones has
been developed. Our approach is based on iminium
ion catalysis using a newly developed modified Cin-
chona amine catalyst. Various enones gave the desired
products in good to excellent enantioselectivities and
high yields using H2O2 as highly practical and eco-
nomic oxidant. Remaining challenges include the use
of a-branched enones and b-aryl-substituted cyclo-
pentenones, which remained essentially unaffected
under our conditions. We expect to be able to ad-
dressing these limitations through careful mechanistic
studies, which are currently ongoing in our laboratory.
As a prelude to future applications, we illustrated the
relevance of our method with a concise synthesis of
the highly potent antibacterial epoxide 4 and we
expect the true potential of our method to be re-
vealed in the context of more complex natural prod-
uct syntheses.

Experimental Section

General Remarks

For detailed experimental procedures, spectral data and
characterization see the Supporting Information.

Typical Experimental Procedure for the Catalytic
Asymmetric Epoxidation of 2-Cyclopentenones

The catalyst 1h (0.02 mmol, 0.1 equivalent) and (R)-Mosh-
er�s acid (0.04 mmol, 0.2 equivalents) were dissolved in 1,4-
dioxane (0.8 mL) at room temperature. 2-Cyclopentenone 2
(0.2 mmol) was added, and 5 min later 50% aqueous hydro-
gen peroxide (0.3 mmol, 1.5 equivalents) was added at the
same temperature. After stirring for 168 h, the reaction mix-
ture was poured into water (10 mL) and extracted with di-
ethyl ether (3 � 15 mL). The organic fractions were dried
(MgSO4), filtered, and concentrated. Purification by column
chromatography on silica gel (n-pentane/diethyl ether,
50:50) afforded the products as pale yellow oils.
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