This article was downloaded by: [Central Michigan University] On: 24 October 2014, At: 06:30 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Facile Synthesis of Alkyl and Aryl Substituted Dibenzo[b,g] [1,8]naphthyridin-5-ones

M. Manoj^a & K. J. Rajendra Prasad^a ^a Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India Published online: 15 Oct 2010.

To cite this article: M. Manoj & K. J. Rajendra Prasad (2010) Facile Synthesis of Alkyl and Aryl Substituted Dibenzo[b,g][1,8]naphthyridin-5-ones, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 40:22, 3290-3308, DOI: 10.1080/00397910903399708

To link to this article: http://dx.doi.org/10.1080/00397910903399708

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

FACILE SYNTHESIS OF ALKYL AND ARYL SUBSTITUTED DIBENZO[*b,g*][1,8]-NAPHTHYRIDIN-5-ONES

M. Manoj and K. J. Rajendra Prasad

Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India

The reaction of 2,4-dichloroquinolines with o-aminoacetophenone and o-aminobenzophenone under neat conditions yielded 2'-acetyl and 2'-benzoyl substituted-4-chloro-2-(N-phenylamino)quinolines, respectively, which on treatment with sodium methoxide afforded the 2'-substituted-4-methoxy-2-(N-phenylamino)quinolines. These potential intermediates, on polyphosphoric acid-catalyzed cyclization at two different temperatures, gave the respective 6-methyl and 6-phenyl substituted dibenzo[b,g][1,8]naphthyridin-5-ones. These temperature differences for the formation of the final products were due to the in situ formation of the respective 2'-substituted-2-(N-phenylamino)quinolin-4-ones from the chloro and methoxy intermediates. The naphthyridin-5-ones were subjected to N-methylation, where the methyl group in the 1-position was found to hinder the reaction sterically, consequently increasing the reaction time to more than that of the other derivatives.

Keywords: 2,4-Dichloroquinolines; 2'-substituted-4-chloro-2-(*N*-phenylamino)quinolines; 2'-substituted-4-methoxy-2-(*N*-phenylamino)quinolines; 6-methyl and 6-phenyldibenzo[*b*,*g*][1,8]naphthyridin-5-ones; *N*-methylation

INTRODUCTION

The process of drug discovery has always influenced synthetic organic chemists to construct compounds possessing reactive functional groups. In this view, the amino-substituted quinolines (e.g., chloroquine, primaquine) derived from the amine functional group serve as low-cost antimalarial drugs, curing billions of infections in poverty-stricken malaria-endemic regions of the world for the past few decades.^[1] Some of the anilinoquinolines also serve as synthetic antimalarials^[2] and have been exploited in deriving various heterocycles such as dibenzonaphthyridines and indoloquinolines. The reaction of chloroquinolines has been extensively studied in an aim to derive biologically active substituted quinolines^[3,4] and also to synthesize some naphthyridine analogs.^[5] Research on the chemistry of naphthyridines has expanded considerably in recent years, and one recent report states that replacing the quinoline moiety by a naphthyridine moiety in primaquine analog enhanced its antimalarial

Received August 3, 2009.

Address correspondence to K. J. Rajendra Prasad, Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nudu, India. E-mail: prasad_125@yahoo.com

activity.^[6] Numerous reports have pertained to these heterocycles acting as CB₂ selective agonists,^[7] antitumor,^[8] anti-HIV,^[9] and anticancer agents^[10] and also as effective bridging ligands in the field of inorganic chemistry.^[11] Particularly some of the dibenzonaphthyridines, that is, quinoline dimers, act as potent and selective 3-phosphoinostide-dependent kinase-I inhibitors.^[12] Many reports represent the synthesis of simple naphthyridines,^[13] benzonaphthyridines,^[14] and dibenzonaphthridines,^[15,16] and very few accomplish their construction through anilinoquinolines.^[17,18]

In this article, we report the synthesis of alkyl and aryl substituted dibenzonaphthyridines utilizing 2,4-dichloroquinolines involving the anilinoquinolines (ie., 2'-acetyl and 2'-benzoyl-substituted 4-chloro-2-(*N*-phenylamino)quinolines and 2'-acetyl and 2'-benzoyl-substituted 4-methoxy-2-(*N*-phenylamino)quinoline) as potential intermediates.

RESULTS AND DISCUSSION

The object of the present investigation was to study the reaction of 2,4dichloroquinolines 1 with *o*-aminoacetophenone and *o*-aminobenzophenone to get the respective 2'-acetyl and 2'-benzoyl(phenylamino)substitution at 2,4- and 2,4-positions of the quinoline moiety, which in turn can be utilized as potential intermediates in deriving the linear and angular alkyl as well as aryl substituted dibenzonaphthyridines.

In view of these considerations, 2,4-dichloroquinolines (1a-d) were reacted with *o*-aminoacetophenone under neat conditions at 160 °C for half an hour. The only product obtained, irrespective of the molar ratio of *o*-aminoacetophenone, was assigned as the 2-substituted product, namely, 2'-acetyl-4-chloro-2-(*N*-phenylamino)quinolines (2a-d), on the basis of the reactivity of the 2- and 4-chloro group of the 2,4-dichloroquinoline.^[19,20] Similarly, 1a-d under the same condition was reacted with *o*-aminobenzophenone to afford 2'-benzoyl-4-chloro-2-(*N*-phenylamino)quinolines (3a-d) (Scheme 1).

In the ¹H NMR spectrum of the anilinoquinolines **2** and **3**, the C₂-NH appeared as a broad singlet around δ 11.00 ppm. All the aromatic protons appeared between the region around δ 7.00–8.00 ppm except for one proton doublet, which was shifted abnormally to the downfield region around δ 9.50 ppm. With the help of advanced NMR studies such as distortionless enhancement by polarization

Scheme 1. Preparation of 2'-acetyl and 2'-benzoyl-substituted 4-chloroanilinoquinolines.

No.	Aromatic proton	Coupling protons
1	7.02 (t, 1H, C'_4-H, $J = 7.20 \text{ Hz}$)	7.65 (t, 1H, C'_5 -H, 7.23 Hz), 7.95 (d, 1H, C'_5 -H, I =8 10 Hz)
2	7.32 (t, 1H, C_6 -H, $J = 7.28$ Hz)	7.95 (d, 1H, C ₅ -H, $J = 8.10$ Hz), 7.55 (d, 1H, C ₇ -H, $J = 7.20$ Hz)
3	7.55 (d, 1H, C_7 -H, $J = 7.20$ Hz)	7.32 (t, 1H, C ₆ -H, 7.28 Hz)
4	7.65 (t, 1H, C'_5-H, $J = 7.23$ Hz)	9.47 (d, 1H, C'_6-H, $J = 8.70$ Hz), 7.00 (t, 1H, C'_4-H, $J = 7.20$ Hz)
5	7.95 (d, 1H, C ₅ -H, $J = 8.10$ Hz)	7.32 (t, 1H, C_6 -H, $J = 7.28$ Hz)
6	7.95 (d, 1H, C'_3 -H, $J = 8.10$ Hz)	7.02 (t, 1H, C'_4 -H, $J = 7.20$ Hz)
7	9.47 (d, 1H, C_6' -H, $J = 8.70$ Hz)	7.65 (t, 1H, C'_5 -H, $J = 7.23$ Hz)

Table 1. Assignment of the coupling protons for all the aromatic protons of 2b

transfer (DEPT-135), correlation spectroscopy (H,H-COSY), and heteronuclear multiple bond correlation (HMBC), the deshielded proton of the 2'-acetyl-4-chloro-8-methyl-2-(*N*-phenylamino)quinoline (**2b**) was assigned for C'₆-H. A one-proton doublet at δ 9.47 (J=8.70 Hz) and a one-proton triplet at δ 7.65 (J=7.23 Hz) have an H,H-COSY connection, which is characteristic of C'₆- and C'₅-protons. The assignment of coupling protons for all the other aromatic protons using H,H-COSY is mentioned in Table 1. The DEPT-135 spectrum displayed 8 –CH signals besides the methyl and the carbonyl carbons, the remaining being the quaternary carbons. The peculiar C'₆-proton has HMBC connectivity with C'₁- and C'₅-carbons. The connectivity of all other protons with the carbons is shown in Fig. 1, and the values are presented in Table 2.

The reason for the C'_6 -H to be deshielded abnormally could be that the hydrogen bonding between the C₂-NH and 2'-carbonyl group fixes the molecule in a particular plane where the C'_6 -H gets oriented in the quinoline ring, experiencing a reinforced anisotropic effect, and thereby shifting the proton around δ 9.50 ppm. The orientation of the molecule **2** could be assigned as represented in Fig. 2. The same reasoning can be extended to 2'-benzoyl-4-chloro-2-(*N*-phenylamino)quinoline (**3**), where the C'_6 -H behaves similarly.

To derive the naphthyridine by acid catalyst cyclization, $2\mathbf{a}-\mathbf{d}$ were heated in the presence of polyphosphoric acid (PPA). The reaction started to proceed only at the temperature of 205–210 °C and completed in 5 h. Analyzing the product through spectral means revealed a broad singlet for the NH group, and the formed product was assigned as 6-methyldibenzo[*b*,*g*][1,8]naphthyridin-5-ones (**4a–d**) and

Figure 1. HMBC connectivity of 2b.

No.	¹ H NMR	HMBC ^{2}J , ^{3}J
1	2.71 (s, 3H, C ₂ -CO-CH ₃)	C' ₂ -CO, C' ₂
2	2.83 (s, 3H, C_8 -CH ₃)	$C_{8a}^2, \overline{C_7}, C_8^2$
3	7.11 (s, 1H, C ₃ -H)	C_4, C_{4a}
4	7.02 (t, 1H, C ₆ -H, $J = 7.20$ Hz)	C'_{6}, C'_{2}
5	7.32 (t, 1H, C ₆ -H, $J = 7.28$ Hz)	$\tilde{C_5}, \tilde{C_8}$
6	7.55 (d, 1H, C_7 -H, $J = 7.20$ Hz)	C ₅ , C ₆
7	7.65 (t, 1H, C'_5 -H, $J = 7.23$ Hz)	C'_1
8	7.95 (d, 1H, C'_3 -H, $J = 8.10$ Hz)	C'_2 -CO, C'_1
9	7.95 (d, 1H, C_5 -H, $J = 8.10$ Hz)	_
10	9.47 (d, 1H, C'_6-H, $J = 8.70$ Hz)	C'_5, C'_1

Table 2. HMBC connectivity of the protons with the carbons of 2b

not the expected product (6). Under similar conditions, 3a-d afforded 6-phenyldibenzo[b,g][1,8]naphthyridin-5-ones (5a-d) (Scheme 2).

Here, the mechanism for the conversion of 2 and 3 to 4 and 5 under PPA conditions (Scheme 3) might be the protonation of the ring nitrogen of 2 and 3 to give the intermediate I followed by the *ipso* attack of the $-OP_2O_6H(R_3)_2$ ion to

Figure 2. Representation of the orientation of the molecule 2, 3.

Scheme 2. Preparation of dibenzo[b,g][1,8]naphthyridin-5-ones.

Scheme 3. Mechanism for the formation of dibenzo[b,g][1,8]naphthyridin-5-ones.

the C₄-carbon, yielding the intermediate **II**, which subsequently on intramolecular elimination of HCl molecule afforded the intermediate **III** (2'-substituted-4'-chloro-2-(*N*-phenylamino)quinolin-4-one). The intermediate **III**, on internal electrophilic attack on the positively induced 2'-carbonyl carbon, afforded the intermediate **IV**, which on subsequent loss of the water molecule yielded the final products **4** and **5**.

It was assumed that the nonfeasibility of the reaction of 2 and 3 at lower temperature might be due to the deactivating nature of the chloro group, which inhibits the internal electrophilic substitution at the C_3 -position of the quinoline moiety. To confirm the statement, we thought to convert the 4-chloro groups of 2 and 3 to 4-methoxy groups in order to proceed with the reaction at lower temperature.

With this motivation, $2\mathbf{a}-\mathbf{d}$ were treated with sodium methoxide for 10 h to afford the respective 2'-acetyl-4-methoxy-2-(N-phenylamino)quinolines (7a-d).

Scheme 4. Preparation of 2'-acetyl and 2'-benzoyl-substituted 4-methoxyanilinoquinolines.

The same reaction was extended to **3a–d** to yield the corresponding 2'-benzoyl-4-methoxy-2-(*N*-phenylamino)quinolines (**8a–d**). (Scheme 4). In this case, the same C'_6 -H behaves abnormally, deshielding around δ 9.50 ppm in the ¹H NMR.

Compounds **7a–d** were then subjected to PPA and monitored for the initiation of the reaction by gradually increasing the temperature. At 130-135 °C, the reaction proceeded and completed in 4 h. Surprisingly, the products matched well with the earlier formed products **4a–d** and not the expected product **9**. Similarly, **8a–d** afforded **3a–d** (Scheme 5).

The reason for the formation of the products **4** and **5** could be predicted as the acid-catalyzed ether cleavage of the OCH₃ group^[21] of **7** and **8** to the intermediate **III** (2'-substituted-2-(*N*-phenylamino)quinolin-4-one), which further gets cyclized to the final products **4** and **5** by the same mechanism mentioned earlier.

The formation of the final products 4 and 5 from 2 and 3 and 7 and 8 on PPA varied in their yields, and they are compared in Table 3.

Scheme 5. Preparation of dibenzo[b,g][1,8]naphthyridin-5-ones.

	Yields (%)					
	Synthesis of 4		Synthesis of 5			
Compounds 4, 5	From 2	From 7	From 3	From 8		
a	20	31	22	33		
b	18	30	21	32		
c	17	27	18	28		
d	20	30	21	31		

Table 3. Comparision of the yields of the final products 4 and 5 obtained from 2, 3 and 7, 8

The formation of the final products **4** and **5** from **2** and **3** and **7** and **8** on PPA at two different temperatures might be caused by the formation of the intermediate **III**, which further on internal electrophilic cyclization leads to the final products (Scheme 6).

To test the *N*-methylation reaction of **4**, it was refluxed with methyl iodide in the presence of ignited potassium carbonate and acetone. The product was formed in 1 h, and was identified as *N*-methylated product, namely, $6,N_{12}$ dimethyldibenzo[*b*,*g*][1,8]naphthyridin-5-ones (**10**). The reaction was generalized

Scheme 6. Overall scheme for the preparation of dibenzo[b,g][1,8]naphthyridin-5-ones.

Scheme 7. N-Methylation reaction of the dibenzo[b,g][1,8]naphthyridin-5-ones 11.

for the naphthyridine derivatives **4a**, **c**, **d** to obtain **10a**, **c**, **d**, except 1,6dimethyldibenzo[*b*,*g*][1,8]naphthyridin-5-one (**4b**) took 5 h for the formation of 1,6, N_{12} -trimethyldibenzo[*b*,*g*][1,8]naphthyridin-5-one (**10b**) and could be predicted because the approach of methyl iodide toward the ring N_{12} -H of the naphthyridine was sterically hindered by the C₁-methyl group. The similar sequence of methylation reaction was also found with **5a-d** to afford the respective N_{12} -methyl-6phenyldibenzo[*b*,*g*][1,8]naphthyridin-5-one (**11a-d**) (Scheme 7).

CONCLUSION

From the experimental work, it may be concluded that the reaction of 2,4-dichloroquinolines (1) with equal or excess moles of o-aminoacetophenone and o-aminobenzophenone resulted only in the formation of monosubstituted anilinoquinolines 2 and 3.

The acid-catalyzed internal electrophilic cyclization reaction of **2** and **3** under PPA at 205-210 °C yielded the respective 6-substituted dibenzo[*b*,*g*][1,8]naphthyridin-5-one **4** and **5** through the intermediate 2'-substituted-2-(*N*-phenylamino)quinolin-4-one (III).

The treatment of 2 and 3 with sodium methoxide yielded 2'-substituted methoxyanilnoquinolines 7 and 8, which on PPA conditions at 130–135 °C resulted in 4 and 5 via the same intermediate III.

The temperature difference for the formation of 4 and 5 from 2 and 3 and 7 and 8 is the reflection of the conversion of Cl and OCH₃ to the OH group (intermediate III) under the same acidic conditions. The difference in the yield of the final products 4 and 5 from 2 and 3 and 7 and 8 may also echo this statement.

EXPERIMENTAL

Melting points (mp) were determined on a Mettler FP 51apparatus (Mettler Instruments, Switzerland) and are uncorrected. They are expressed in degree centigrade (°C). Infrared (IR) spectra were recorded on a Schimadzu Fourier transform (FT)–IR-8201PC spectrophotometer (Schimadzu, Japan) using KBr discs. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AMX 400 [400 MHz (¹H) and 100 MHz (¹³C)] spectrometer, and 2D-NMR were recorded on a Bruker AV 300-MHz instrument using tetramethylsilane (TMS) as an internal reference. The chemical shifts are expressed in parts per million (ppm). Mass spectra (MS) were recorded on an AutoSpec EI+Shimadzu QP 2010 Plus gas chromatography (GC)–MS mass spectrometer. Microanalyses were performed on a Vario EL III model CHNS analyzer (Vario, Germany) at the Department of Chemistry, Bharathiar University. The purity of the products was tested by thin-layer chromatography (TLC) with plates coated with silica gel G, with petroleum ether and ethyl acetate as developing solvents.

Preparation of 2'-Acetyl and 2'-Benzoyl Substituted 4-Chloro-2-(N-phenylamino)quinolines (2, 3) from 2,4-Dichloroquinolines (1): General Procedure

An appropriate mixture of 2,4-dichloroquinolines (1, 0.004 mol) was reacted with *o*-aminoacetophenone and *o*-aminobenzophenone (0.004 mol or excess) under neat conditions at 160 °C for half an hour. The product was washed with water, adsorbed, and purified using silica-gel column chromatography and eluted with petroleum ether–ethyl acetate (98:2 and 99:1) to get **2** and **3**, respectively. Both were recrystallized from ethanol.

Selected Data

Compound 2a. Colorless prisms. Mp 145–147 °C. Yield: 0.868 g, 70%. IR ν_{max} (cm⁻¹): 3421 (NH), 1631 (C=O), 1579, 1518, 1149. ¹H NMR (CDCl₃) δ : 2.61 (s, 3H, C₆-CH₃), 2.68 (s, 3H, COCH₃), 7.14–7.94 (m, 6H, C₃-, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 7.98 (s, 1H, C₅-H), 9.48 (d, 1H, C'₆-H, J=8.61 Hz), 11.57 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.6 (COCH₃), 22.7 (C₆-CH₃), 114.3 (C₃), 119.4 (C'₄), 119.8 (C₄), 120.5 (C'₂), 121.7 (C'₆), 122.6 (C₅), 124.0 (C'₃), 130.6 (C₈), 131.8 (C₇), 133.0 (C₆), 138.9 (C'₅), 143.9 (C'₁), 147.5 (C_{4a}), 148.3 (C_{8a}), 150.9 (C₂), 202.6 (C=O). MS: m/z (%) 312/310 (M⁺, 15/49), 295 (10), 293 (10), 267 (48), 260 (10), 120 (33), 77 (10), 44 (100). Anal. calcd. for C₁₈H₁₅N₂ClO: C, 69.68; H, 4.84; N, 9.03. Found: C, 69.31; H, 4.99; N, 8.96%.

Compound 2b. Colorless needles. Mp 146–148 °C. Yield: 0.893 g, 72%. IR ν_{max} (cm⁻¹): 3426 (NH), 1628 (C=O), 1577, 1518, 1145. ¹H NMR (CDCl₃) δ : 2.71 (s, 3H, COCH₃), 2.83 (s, 3H, C₈-CH₃), 6.91–8.23 (m, 7H, C₃-, C₅-, C₆-, C₇-, C'₃-, C'₄-, C'₅-H), 9.47 (d, 1H, C'₆-H, J=8.70 Hz), 11.09 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.8 (COCH₃), 28.5 (C₈-CH₃), 114.3 (C₃), 119.4 (C'₄), 119.5 (C₄), 120.5 (C'₂), 121.7 (C'₆), 122.5 (C₅), 124.0 (C'₃), 130.8 (C₆), 132.0 (C₇), 135.4 (C₈), 138.9 (C'₅), 143.9 (C'₁), 146.9 (C_{4a}), 149.6 (C_{8a}), 150.9 (C₂), 202.6 (C=O). MS: m/z (%) 312/310 (M⁺, 17/51), 295 (15), 293 (10), 267 (32), 254 (15), 120 (44), 77 (38), 44 (100). Anal. calcd. for C₁₈H₁₅N₂ClO: C, 69.68; H, 4.84; N, 9.03. Found: C, 69.79; H, 4.91; N, 8.92%.

Compound 2c. White solid Mp 149–151 °C. Yield: 0.924 g, 70%. IR ν_{max} (cm⁻¹): 3425 (NH), 1630 (C=O), 1571, 1527, 1134. ¹H NMR (CDCl₃) δ : 2.72 (s, 3H, COCH₃), 7.03–7.95 (m, 6H, C₃-, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 8.03 (d, 1H, C₅-H,

J = 2.50 Hz), 9.39 (d, 1H, C₆⁻H, J = 8.64 Hz), 11.86 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.7 (COCH₃), 114.3 (C₃), 119.4 (C₄'), 119.3 (C₄), 120.5 (C₂'), 121.7 (C₆'), 122.0 (C₅), 124.0 (C₃'), 130.5 (C₈), 131.2 (C₇), 132.3 (C₆), 138.9 (C₅'), 143.9 (C₁'), 147.3 (C_{4a}), 148.2 (C_{8a}), 150.9 (C₂), 202.6 (C=O). MS: m/z (%) 334/332/330 (M⁺, 11/28/50), 315 (30), 314 (28), 295 (36), 160 (10), 120 (49), 77 (35), 44 (100). Anal. calcd. for C₁₇H₁₂N₂Cl₂O: C, 61.82; H, 3.64; N, 8.49. Found: C, 61.74; H, 3.81; N, 8.34%.

Compound 2d. Colorless prisms. Mp 141–143 °C. Yield: 0.864 g, 73%. IR ν_{max} (cm⁻¹): 3422 (NH), 1629 (C=O), 1581, 1517, 1136. ¹H NMR (CDCl₃) δ : 2.69 (s, 3H, COCH₃), 7.08–8.02 (m, 8H, C₃-, C₅-, C₆-, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 9.43 (d, 1H, C'₆-H, J=8.66 Hz), 11.58 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.6 (COCH₃), 114.3 (C₃), 119.8 (C'₄), 119.4 (C₄), 120.5 (C'₂), 121.7 (C'₆), 122.5 (C₅), 124.0 (C'₃), 130.8 (C₆), 132.0 (C₈), 132.8 (C₇), 138.9 (C'₅), 143.9 (C'₁), 146.9 (C_{4a}), 149.6 (C_{8a}), 150.9 (C₂), 202.6 (C=O). MS: m/z (%) 298/296 (M⁺, 18/56), 295 (30), 281 (10), 268 (48), 160 (12), 120 (46), 77 (18), 44 (100). Anal. calcd. for C₁₇H₁₃N₂ClO: C, 68.92; H, 4.39; N, 9.46. Found: C, 69.03; H, 4.48; N, 9.34%.

Compound 3a. Pale yellow prisms. Mp 168–170 °C. Yield: 1.057 g, 71%. IR ν_{max} (cm⁻¹): 3430 (NH), 1634 (C=O), 1579, 1525, 1156. ¹H NMR (CDCl₃) & 2.55 (s, 3H, C₆-CH₃), 6.98–7.82 (m, 11H, C₃-, C₇-, C₈-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₆-H), 7.87 (s, 1H, C₅-H), 9.19 (d, 1H, C'₆-H, J=8.26 Hz), 11.02 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) & 21.5 (C₆-CH₃), 114.3 (C₃), 119.8 (C'₄), 122.5 (C₄), 123.8 (C'₂), 126.9 (C'₆), 128.3 (C₅), 129.4 (C''₂, C''₆), 129.7 (C''₃, C''₅), 130.1 (C''₄), 130.0 (C'₃), 131.3 (C₈), 131.2 (C₇), 133.9 (C₆), 136.4 (C'₅), 138.6 (C''₁), 142.3 (C'₁), 146.0 (C_{4a}), 150.3 (C_{8a}), 151.9 (C₂), 168.8 (C=O). MS: m/z (%) 374/372 (M⁺, 15/55), 371 (25), 357 (12), 344 (40), 295 (45), 105 (37), 77 (79), 44 (100). Anal. calcd. for C₂₃H₁₇N₂ClO: C, 74.19; H, 4.56; N, 7.53. Found: C, 74.11; H, 4.70; N, 7.41%.

Compound 3b. Pale yellow needles. Mp 166–168 °C. Yield: 1.010 g, 74%. IR ν_{max} (cm⁻¹): 3431 (NH), 1631 (C=O), 1589, 1524, 1148. ¹H NMR (CDCl₃) δ : 2.73 (s, 3H, C₈-CH₃), 7.00–7.95 (m, 11H, C₃-, C₆-, C₇-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₆-H), 7.99 (d, 1H, C₅-H, J = 8.32 Hz), 9.35 (d, 1H, C'₆-H, J = 8.37 Hz), 11.01 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 19.8 (C₈-CH₃), 114.3 (C₃), 119.8 (C'₄), 122.5 (C₄), 123.8 (C'₂), 126.9 (C'₆), 128.1 (C₅), 129.4 (C''₂, C''₆), 129.7 (C''₃, C''₅), 130.1 (C''₄), 130.0 (C'₃), 131.5 (C₆), 132.8 (C₇), 136.1 (C₈), 136.4 (C'₅), 138.6 (C''₁), 142.3 (C'₁), 146.1 (C_{4a}), 150.1 (C_{8a}), 151.8 (C₂), 168.8 (C=O). MS: m/z (%) 374/372 (M⁺, 19/64), 371 (15), 357 (22), 344 (33), 295 (41), 105 (47), 77 (75), 44 (100). Anal. calcd. for C₂₃H₁₇N₂ClO: C, 74.19; H, 4.56; N, 7.53. Found: C, 74.31; H, 4.63; N, 7.44%.

Compound 3c. Pale yellow solid. Mp 170–172 °C. Yield: 1.098 g, 70%. IR ν_{max} (cm⁻¹): 3430 (NH), 1631 (C=O), 1585, 1519, 1146. ¹H NMR (CDCl₃) δ : 7.02–7.92 (m, 11H, C₃-, C₇-, C₈-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₆-H), 8.04 (s, 1H, C₅-H), 9.31 (d, 1H, C'₆-H, J=8.39 Hz), 10.94 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 114.3 (C₃), 119.8 (C'₄), 122.3 (C₄), 123.8 (C'₂), 126.9 (C'₆), 127.8 (C₅), 129.4 (C''₂, C''₆), 129.7 (C''₃, C''₅), 130.1 (C''₄), 130.0 (C'₃), 130.9 (C₈), 131.8 (C₇), 133.0 (C₆), 136.4 (C'₅), 138.6 (C''₁), 142.3 (C'₁), 145.8 (C_{4a}), 150.0 (C_{8a}), 151.7 (C₂), 168.8 (C=O). MS: m/z (%) 396/394/392 (M⁺, 20/42/78), 391 (30), 364 (36), 357 (25),

166 (20), 0105 (51), 77 (63), 44 (100). Anal. calcd. for $C_{22}H_{14}N_2Cl_2O$: C, 67.35; H, 3.57; N, 7.14. Found: C, 67.22; H, 3.69; N, 7.25%.

Compound 3d. Pale yellow prisms. Mp 163–165 °C. Yield: 1.031 g 72%. IR ν_{max} (cm⁻¹): 3427 (NH), 1633 (C=O), 1584, 1526, 1150. ¹H NMR (CDCl₃) δ : 6.98–7.90 (m, 12H, C₃-, C₆-, C₇-, C₈-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₆-H), 8.07 (dd, 1H, C₅-H, J_I =1.15 Hz, J_2 =8.31 Hz), 9.28 (d, 1H, C'₆-H, J=8.42 Hz), 10.98 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 114.3 (C₃), 119.8 (C'₄), 123.1 (C₄), 123.8 (C'₂), 126.9 (C'₆), 128.5 (C₅), 129.4 (C''₂, C''₆), 129.7 (C''₃, C''₅), 130.1 (C''₄), 130.0 (C'₃), 131.1 (C₆), 131.4 (C₈), 132.9 (C₇), 136.4 (C'₅), 138.6 (C''₁), 142.3 (C'₁), 145.6 (C_{4a}), 149.9 (C_{8a}), 151.8 (C₂), 168.8 (C=O). MS: m/z (%) 360/358 (M⁺, 20/65), 357 (48), 330 (26), 281 (29), 166 (22), 105 (51), 77 (82), 44 (100). Anal. calcd. for C₂₂H₁₅N₂ClO: C, 73.74; H, 4.19; N, 7.82. Found: C, 73.61; H, 4.17; N, 7.89%.

Preparation of 6-Methyl and 6-Phenyl Substituted Dibenzo[b,g]-[1,8]naphthyridin-5-ones (4, 5) from 2'-Acetyl and 2'-Benzoyl Substituted 4-Chloro-2-(N-phenylamino)quinolines (2, 3): General Procedure

2'-Acetyl and 2'-benzoyl substituted 4-chloro-2-(*N*-phenylamino)quinolines (2 and 3, 0.002 mol) were added to polyphosphoric acid (6g of P_2O_5 in 3 mL of H_3PO_4) and heated at 205–210 °C for 5h. The reaction was monitored using TLC. After the completion of the reaction, the reaction mixture was poured into ice water, extracted with ethyl acetate, and purified by column chromatography using silica gel, and the product was eluted with a petroleum ether–ethyl acetate (95:5 and 96:4) mixture to get **4** and **5**, respectively. Both were recrystallized from methanol.

Selected Data

Compound 4a. Colorless needles. Mp 189–191 °C. Yield: 0.110 g, 20%. IR ν_{max} (cm⁻¹): 3418 (NH), 1649 (C=O), 1611, 1566, and 1463. ¹H NMR (CDCl₃) δ : 2.39 (s, 3H, C₃-CH₃), 3.41 (s, 3H, C₆-CH₃), 7.16–7.97 (m, 6H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-H), 8.11 (s, 1H, C₄-H), 9.22 (b s, 1H, N₁₂-H. ¹³C NMR (CDCl₃) δ : 18.9 (C₃-CH₃), 28.6 (C₆-CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.5 (C₁), 128.0 (C₄), 128.2 (C₂), 129.7 (C₃), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.8 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: *m/z* (%) 274 (M⁺, 77), 273 (100), 259 (18), 254 (11), 235 (22), 234 (12), 184 (14), 77 (51). Anal. calcd. for C₁₈H₁₄N₂O: C, 78.83; H, 5.11; N, 10.22. Found: C, 78.89; H, 5.16; N, 10.30%.

Compound 4b. Colorless prisms. Mp 191–193 °C. Yield: 0.098 g, 18%. IR ν_{max} (cm⁻¹): 3421 (NH), 1648 (C=O), 1606, 1564, and 1472. ¹H NMR (CDCl₃) δ : 2.54 (s, 3H, C₁-CH₃), 3.38 (s, 3H, C₆-CH₃), 7.12–8.01 (m, 6H, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-H), 8.20 (d, 1H, C₄-H, J=8.23 Hz), 9.52 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 16.8 (C₁-CH₃), 28.6 (C₆-CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.6 (C₃), 127.8 (C₄), 128.0 (C₂), 130.6 (C₁), 137.9 (C₆), 138.6 (C₆a), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.8 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 274 (M⁺, 82), 273 (100), 259 (18), 254 (11), 235 (22), 234 (12),

184 (14), 77 (51). Anal. calcd. for $C_{18}H_{14}N_2O$: C, 78.83; H, 5.11; N, 10.22. Found: C, 78.77; H, 5.05; N, 10.32%.

Compound 4c. White solid. Mp 198–200 °C. Yield: 0.099 g, 17%. IR ν_{max} (cm⁻¹): 3420 (NH), 1646 (C=O), 1607, 1551, and 1471. ¹H NMR (CDCl₃) δ : 3.35 (s, 3H, C₆-CH₃), 7.14–7.95 (m, 6H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-H), 8.13 (d, 1H, C₄-H, J=2.16 Hz), 9.41 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 28.6 (C₆-CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.4 (C₁), 127.8 (C₄), 128.0 (C₂), 129.3 (C₃), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.8 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z 296/294 (M⁺, 34/100), 293 (91), 279 (17), 274 (26), 235 (52), 234 (12), 184 (15), 77 (45). Anal. calcd. for C₁₇H₁₁N₂ClO: C, 69.39; H, 3.74; N, 9.52. Found: C, 69.26; H, 3.75; N, 9.46%.

Compound 4d. Colorless prisms. Mp 187–189 °C. Yield: 0.094 g, 20%. IR ν_{max} (cm⁻¹): 3419 (NH), 1648 (C=O), 1610, 1558, and 1474. ¹H NMR (CDCl₃) δ : 3.36 (s, 3H, C₆-CH₃), 7.21–8.03 (m, 7H, C₁-, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-H), 8.11 (dd, 1H, C₄-H, J_I = 1.42 Hz, J_2 = 8.12 Hz), 9.29 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 28.6 (C₆-CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.5 (C₃), 127.6 (C₄), 127.8 (C₁), 128.6 (C₂), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.8 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 260 (M⁺, 83), 259 (100), 245 (20), 244 (23), 233 (18), 232 (10), 184 (12), 77 (30). Anal. calcd. for C₁₇H₁₂N₂O: C, 78.46; H, 4.62; N, 10.77. Found: C, 78.51; H, 4.59; N, 10.83%.

Compound 5a. Colorless needles. Mp 203–205 °C. Yield: 0.148 g, 22%. IR ν_{max} (cm⁻¹): 3426 (NH), 1649 (C=O), 1610, 1564, and 1476. ¹H NMR (CDCl₃) δ : 2.38 (s, 3H, C₃-CH₃), 7.11–7.87 (m, 11H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'_5-, C'_6-H), 8.02 (s, 1H, C₄-H), 8.69 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 18.6 (C₃-CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 128.0 (C₁), 128.1 (C₄), 128.3 (C₂), 130.0 (C₃), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.8 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 150.9 (C_{12a}), 153.4 (C_{11a}), 179.6 (C=O). MS: m/z (%) 336 (M⁺, 75), 335 (100), 321 (11), 260 (23), 259 (32), 202 (33), 184 (36), 77 (61). Anal. calcd. for C₂₃H₁₆N₂O: C, 82.14; H, 4.76; N, 8.33. Found: C, 82.09; H, 4.68; N, 8.26%.

Compound 5b. Colorless prisms. Mp 201–203 °C. Yield: 0.141 g, 21%. IR ν_{max} (cm⁻¹): 3427 (NH), 1646 (C=O), 1605, 1566, and 1483. ¹H NMR (CDCl₃) δ : 2.58 (s, 3H, C₁-CH₃), 7.08–7.86 (m, 11H, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅-, C'₆-H), 8.11 (d, 1H, C₄-H, J = 8.15 Hz), 8.55 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 16.8 (C₁-CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.8 (C₃), 128.0 (C₄), 128.2 (C₂), 130.8 (C₁), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.3 (C_{12a}), 153.5 (C_{11a}), 179.6 (C=O). MS: m/z (%) 336 (M⁺, 75), 335 (100), 321 (21), 260 (27), 259 (12), 202 (19), 184 (30), 77 (59). Anal. calcd. for C₂₃H₁₆N₂O: C, 82.14; H, 4.76; N, 8.33. Found: C, 82.05; H, 4.65; N, 8.36%.

Compound 5c. White solid. Mp 209–211 °C. Yield: 0.135 g, 18%. IR ν_{max} (cm⁻¹): 3430 (NH), 1642 (C=O), 1601, 1559, and 1471. ¹H NMR (CDCl₃) δ : 7.08–7.88 (m, 11H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅-, C'₆-H), 8.18 (d, 1H, C₄-H, J=2.38 Hz), 8.94 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 121.0 (C₈),

122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.9 (C₁), 128.0 (C₄), 128.1 (C₂), 129.4 (C₃), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 150.8 (C_{12a}), 153.4 (C_{11a}), 179.6 (C=O). MS: m/z 358/356 (M⁺, 32/100), 355 (75), 341 (26), 321 (11), 280 (14), 279 (21), 184 (23), 75 (42). Anal. calcd. for C₂₂H₁₃N₂ClO: C, 74.16; H, 3.65; N, 7.87. Found: C, 74.08; H, 23.57; N, 7.96%.

Compound 5d. Colorless prisms. Mp 200–202 °C. Yield: 0.135 g, 21%. IR ν_{max} (cm⁻¹): 3429 (NH), 1647 (C=O), 1607, 1560, and 1478. ¹H NMR (CDCl₃) δ : 7.27–7.81 (m, 12H, C₁-, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅-, C'₆-H), 8.21 (dd, 1H, C₄-H, J_I = 1.30 Hz, J_2 = 8.08 Hz), 8.83 (b s, 1H, N₁₂-H). ¹³C NMR (CDCl₃) δ : 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.9 (C₁), 128.2 (C₄), 128.9 (C₃), 129.4 (C₂), 133.4 (C'₁), 137.1 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.0 (C_{12a}), 153.4 (C_{11a}), 179.6 (C=O). MS: m/z (%) 322 (M⁺, 100), 321 (82), 296 (22), 246 (18), 245 (34), 183 (12), 77 (35), 75 (46). Anal. calcd. for C₂₂H₁₄N₂O: C, 81.99; H, 4.35; N, 8.70. Found: C, 82.03; H, 4.31; N, 8.79%.

Preparation of 2'-Acetyl and 2'-Benzoyl Substituted 4-Methoxy-2-(N-phenylamino)quinolines (7, 8) from 2'-Acetyl and 2'-Benzoyl Substituted 4-Chloro-2-(N-phenylamino)quinolines (2, 3): General Procedure

2'-Acetyl and 2'-benzoyl substituted 4-chloro-2-(*N*-phenylamino)quinolines (**2** and **3**, 0.002 mol) were added to sodium methoxide solution (2 g of sodium in 15 mL of methanol) and heated over the water bath for 10 h. The reaction was monitored by TLC. After the completion of the reaction, excess methanol was evaporated, and the reaction mixture was poured into ice water and neutralized with diluted HCl. The resulting precipitate was filtered, dried, and subjected to purification by column chromatography over silica gel using a petroleum ether–ethyl acetate (94:6 and 95:5) mixture to get **7** and **8**, respectively. Both were recrystallized from methanol.

Selected Data

Compound 7a. Colorless prisms. Mp 166–168 °C. Yield: 0.275 g, 45%. IR ν_{max} (cm⁻¹): 3432 (NH), 1629 (C=O), and 1598, 1528, and 1236 (OCH₃). ¹H NMR (CDCl₃) δ : 2.55 (s, 3H, C₆-CH₃), 2.61 (s, 3H, COCH₃), 4.07 (s, 3H, OCH₃), 6.42 (s, 1H, C₃-H), 7.11–7.82 (m, 5H, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 7.93 (s, 1H, C₅-H), 9.44 (d, 1H, C'₆-H, J=8.42 Hz), 10.97 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.9 (COCH₃), 22.1 (C₆-CH₃), 53.6 (O-CH₃), 91.8 (C₃), 118.0 (C'₄), 119.1 (C₄), 120.8 (C'₂) 121.7 (C'₆) 122.3 (C₅), 130.5 (C'₃), 132.0 (C₈), 132.9 (C₇), 134.1 (C₆), 134.3 (C'₅), 142.6 (C'₁), 146.8 (C_{4a}), 152.7 (C_{8a}), 163.2 (C₂), 199.1 (C=O). MS: m/z (%) 306 (M⁺, 61), 305 (22), 291 (21), 278 (35), 276 (14), 275 (26), 105 (48), 77 (100). Anal. calcd. for C₁₉H₁₈N₂O₂: C, 74.51; H, 5.88; N, 9.15. Found: C, 74.38; H, 5.99; N, 9.04%.

Compound 7b. Colorless needles. Mp 164–166 °C. Yield: 0.263 g, 43%. IR ν_{max} (cm⁻¹): 3436 (NH), 1630 (C=O), 1586, 1520, 1234 (OCH₃). ¹H NMR (CDCl₃) δ : 2.59 (s, 3H, COCH₃), 2.71 (s, 3H, C₈-CH₃), 4.11 (s, 3H, OCH₃), 6.39 (s, 1H, C₃-H), 7.09–7.80 (m, 5H, C₆-, C₇-, C'₃-, C'₄-, C'₅-H), 7.85 (d, 1H, C₅-H, J = 8.40 Hz), 9.43 (d, 1H, C'₆-H, J = 8.47 Hz), 11.05 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.9 (COCH₃), 27.3 (C₈-CH₃), 53.7 (O-CH₃), 91.8 (C₃), 118.0 (C'₄), 119.0 (C₄), 120.8 (C'₂), 121.7 (C'₆), 122.6 (C₅), 130.5 (C'₃), 131.6 (C₆), 133.6 (C₇), 134.3 (C'₅), 136.4 (C₈), 142.6 (C'₁), 146.9 (C_{4a}), 155.1 (C_{8a}), 163.5 (C₂), 199.1 (C=O). MS: m/z (%) 306 (M⁺, 57), 305 (22), 291 (42), 278 (25), 276 (42), 105 (50), 77 (100), 44 (75). Anal. calcd. for C₁₉H₁₈N₂O₂: C, 74.51; H, 5.88; N, 9.15. Found: C, 74.46; H, 5.87; N, 9.09%.

Compound 7c. White solid. Mp 169–171 °C. Yield: 0.261 g, 40%. IR ν_{max} (cm⁻¹): 3432 (NH), 1631 (C=O), 1585, 1524, 1238 (OCH₃). ¹H NMR (CDCl₃) δ : 2.61 (s, 3H, COCH₃), 4.09 (s, 3H, OCH₃), 6.38 (s, 1H, C₃-H), 7.14–7.84 (m, 5H, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 8.08 (s, 1H, C₅-H), 9.39 (d, 1H, C'₆-H, J = 8.48 Hz), 11.03 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) 18.9 (COCH₃), 53.6 (O-CH₃), 91.8 (C₃), 118.0 (C'₄), 119.1 (C₄), 120.8 (C'₂) 121.7 (C'₆) 122.0 (C₅), 130.5 (C'₃), 132.0 (C₈), 132.9 (C₇), 133.8 (C₆), 134.3 (C'₅), 142.6 (C'₁), 146.5 (C_{4a}), 152.7 (C_{8a}), 163.2 (C₂), 199.1 (C=O). MS: m/z (%) 328/326 (M⁺, 20/73), 325 (15), 311 (19), 298 (24), 296 (12), 105 (33), 77 (100), 44 (41). Anal. calcd. for C₁₈H₁₅N₂ClO₂: C, 66.26; H, 4.60; N, 8.59. Found: C, 66.12; H, 4.65; N, 8.60%.

Compound 7d. Colorless prisms. Mp 160–162 °C. Yield: 0.239 g, 41%. IR ν_{max} (cm⁻¹): 3429 (NH), 1633 (C=O), 1580, 1520, 1234 (OCH₃). ¹H NMR (CDCl₃) δ : 2.58 (s, 3H, COCH₃), 4.10 (s, 3H, OCH₃), 6.41 (s, 1H, C₃-H), 7.15–7.96 (m, 7H, C₅-, C₆-, C₇-, C₈-, C'₃-, C'₄-, C'₅-H), 9.37 (d, 1H, C'₆-H, J = 8.62 Hz), 11.02 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) 18.9 (COCH₃), 53.7 (O-CH₃), 91.8 (C₃), 118.0 (C'₄), 119.0 (C₄), 120.8 (C'₂) 121.7 (C'₆) 122.4 (C₅), 130.5 (C'₃), 131.5 (C₆), 133.6 (C₈), 133.9 (C₇), 134.3 (C'₅), 142.6 (C'₁), 146.9 (C_{4a}), 155.1 (C_{8a}), 164.0 (C₂), 199.1 (C=O). MS: m/z (%) 292 (M⁺, 68), 291 (27), 277 (31), 264 (32), 261 (17), 105 (40), 77 (100), 44 (46). Anal. calcd. for C₁₈H₁₆N₂O₂: C, 73.97; H, 5.48; N, 9.59. Found: C, 74.08; H, 5.50; N, 9.65%.

Compound 8a. Colorless prisms. Mp 174–176 °C. Yield: 0.346 g, 47%. IR ν_{max} (cm⁻¹): 3432 (NH), 1627 (C=O), 1595, 1522, and 1238 (OCH₃). ¹H NMR (CDCl₃) δ : 2.52 (s, 3H, C₆-CH₃), 4.07 (s, 3H, OCH₃), 6.30 (s, 1H, C₃-H), 7.25–7.81 (m, 10H, C₇-, C₈-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅ -, C''₆-H), 7.92 (s, 1H, C₅-H), 9.48 (d, 1H, C'₆-H, J = 8.64 Hz), 10.97 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 21.1 (C₆-CH₃), 55.8 (O-CH₃), 92.3 (C₃), 118.0 (C'₄), 119.4 (C₄), 121.3 (C'₂), 121.8 (C'₆), 122.8 (C₅), 128.4 (C''₂, C''₆), 129.6 (C''₃, C''₅), 130.4 (C''₄), 131.1 (C'₃), 132.3 (C₈), 133.2 (C₇), 133.8 (C₆), 134.2 (C'₅), 138.9 (C''₁), 143.0 (C'₁), 146.9 (C_{4a}), 152.9 (C_{8a}), 163.4 (C₂), 199.2 (C=O). MS: m/z (%) 368 (M⁺, 55), 367 (22), 353 (36), 337 (12), 291 (15), 105 (51), 77 (100), 44 (64). Anal. calcd. for C₂₄H₂₀N₂O₂: C, 78.26; H, 5.43; N, 7.61. Found: C, 78.37; H, 5.46; N, 7.55%.

Compound 8b. Colorless needles. Mp 177–179 °C. Yield: 0.353 g, 48%. IR ν_{max} (cm⁻¹): 3433 (NH), 1631 (C=O), 1585, 1519, 1233 (OCH₃). ¹H NMR (CDCl₃) δ : 2.76 (s, 3H, C₈-CH₃), 4.04 (s, 3H, OCH₃), 6.29 (s, 1H, C₃-H), 7.21–7.75 (m, 10H,

C₆-, C₇-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅, - C''₆-H), 7.93 (d, 1H, C₅-H, J=8.33 Hz), 9.50 (d, 1H, C'₆-H, J=8.62 Hz), 11.04 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 18.7 (C₈-CH₃), 55.7 (O-CH₃), 92.2 (C₃), 118.0 (C'₄), 119.4 (C₄), 121.3 (C'₂), 121.8 (C'₆), 123.0 (C₅), 128.4 (C''₂, C''₆), 129.6 (C''₃, C''₅), 130.4 (C''₄), 131.1 (C'₃), 131.8 (C₆), 133.6 (C₇), 134.0 (C₈), 134.2 (C'₅), 138.9 (C''₁), 143.0 (C'₁), 146.7 (C_{4a}), 153.1 (C_{8a}), 163.4 (C₂), 199.2 (C=O). MS: m/z (%) 368 (M⁺, 61), 367 (15), 353 (46), 337 (22), 291 (10), 105 (56), 77 (100), 44 (74). Anal. calcd. for C₂₄H₂₀N₂O₂: C, 78.26; H, 5.43; N, 7.61. Found: C, 78.32; H, 5.36; N, 7.65%.

Compound 8c. White solid. Mp 180–182 °C. Yield: 0.326 g, 42%. IR ν_{max} (cm⁻¹): 3434 (NH), 1632 (C=O), 1588, 1526, 1239 (OCH₃). ¹H NMR (CDCl₃) δ : 4.10 (s, 3H, OCH₃), 6.33 (s, 1H, C₃-H), 7.48–7.88 (m, 10H, C₇-, C₈-, C'₃-, C'₄-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₆-H), 8.09 (s, 1H, C₅-H), 9.49 (d, 1H, C'₆-H, J = 8.68 Hz), 10.94 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 55.8 (O-CH₃), 92.3 (C₃), 118.0 (C'₄), 119.1 (C₄), 121.3 (C'₂) 121.8 (C'₆) 122.1 (C₅) 128.4 (C''₂, C''₆), 129.6 (C''₃, C''₅), 130.4 (C''₄), 131.1 (C'₃), 131.9 (C₈), 132.6 (C₇), 133.1 (C₆), 134.2 (C'₅), 138.9 (C''₁), 143.0 (C'₁), 146.1 (C_{4a}), 152.5 (C_{8a}), 163.3 (C₂), 199.2 (C=O). MS: m/z (%) 390/388 (M⁺, 20/73), 387 (15), 373 (12), 357 (26), 353 (12), 105 (16), 77 (100), 44 (36). Anal. calcd. for C₂₃H₁₇N₂ClO₂: C, 71.13; H, 4.38; N, 7.22. Found: C, 71.05; H, 4.45; N, 7.36%.

Compound 8d. Colorless prisms. Mp 171–173 °C. Yield: 0.304 g, 43%. IR ν_{max} (cm⁻¹): 3429 (NH), 1634 (C=O), 1589, 1521, 1233 (OCH₃). ¹H NMR (CDCl₃) δ : 4.09 (s, 3H, OCH₃), 6.30 (s, 1H, C₃-H), 7.44–7.94 (m, 11H, C₆-, C₇-, C₈-, C'₃-, C'₅-, C''₂-, C''₃-, C''₄-, C''₅-, C''₅-, C''₆-, H), 8.01 (dd, 1H, C₅-H, J_I = 1.81 Hz, J_2 = 8.36 Hz), 9.52 (d, 1H, C'₆-H, J = 8.61 Hz), 10.99 (b s, 1H, C₂-NH). ¹³C NMR (CDCl₃) δ : 55.8 (O-CH₃), 92.3 (C₃), 118.0 (C'₄), 119.3 (C₄), 121.3 (C'₂), 121.8 (C'₆), 122.5 (C₅), 128.4 (C''₂, C''₆), 129.6 (C''₃, C''₅), 130.4 (C''₄), 131.1 (C'₃), 131.6 (C₆), 133.4 (C₈), 133.7 (C₇), 134.2 (C'₅), 138.9 (C''₁), 143.0 (C'₁), 145.9 (C_{4a}), 152.3 (C_{8a}), 163.3 (C₂), 199.2 (C=O). MS: m/z (%) 354 (M⁺, 68), 353 (16), 339 (33), 323 (16), 277 (20), 105 (44), 77 (100), 44 (51). Anal. calcd. for C₂₃H₁₈N₂O₂: C, 77.97; H, 5.09; N, 7.91. Found: C, 78.03; H, 5.12; N, 8.01%.

Preparation of 6-Methyl and 6-Phenyl Substituted Dibenzo[b,g]-[1,8]naphthyridin-5-ones (4, 5) from 2'-Acetyl and 2'-Benzoyl Substituted 4-Methoxy-2-(N-phenylamino)quinolines (7, 8): General Procedure

2'-Acetyl and 2'-benzoyl substituted 4-methoxy-2-(*N*-phenylamino)quinoline (7 and **8**, 0.002 mol) were added to polyphosphoric acid (6 g of P_2O_5 in 3 mL of H_3PO_4) and heated at 130–135 °C for 4 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water, extracted with ethyl acetate, and purified by column chromatography using silica gel, and the product eluted with a petroleum ether–ethyl acetate (95:5 and 96:4) mixture to get **4** and **5**, respectively. The product was recrystallized from methanol. From the TLC, mixed melting point, and super-impossible IR spectra, the products were identified as **4** and **5**, which were obtained earlier from the reaction of **2** and **3**. The yields of the products 4 and 5 obtained from this reaction are compared with the yields obtained from 2 and 3 in Table 3.

Preparation of $6,N_{12}$ -Dimethyldibenzo[b,g][1,8]naphthyridin-5-ones (10) and N_{12} -Methyl-6-phenyldibenzo[b,g][1,8]naphthyridin-5-ones (11) from 6-Methyl and 6-Phenyl Substituted dibenzo[b,g][1,8]naphthyridin-5-ones (4, 5): General Procedure

6-Methyl and 6-phenyl substituted dibenzo[b,g][1,8]naphthyridin-5-ones (**4a**, **c**, and **d**, 0.001 mol) were refluxed with methyl iodide (1 mL) in the presence of ignited potassium carbonate (2 g) and acetone (10 mL) for 1 h except **4b** and **5b** took 5 h for the formation of **10b** and **11b** respectively. The reaction was monitored by TLC. After the completion of the reaction, the excess acetone was evaporated, and the reaction mixture was poured into ice water, neutralized with diluted HCl, and extracted with ethyl acetate. Purification by column chromatography over silica gel using petroleum ether–ethyl acetate (98:2 and 99:1) mixture as eluant yielded **10** and **11**, respectively. Both were recrystallized from ethanol.

Selected Data

Compound 10a. Pale yellow needles. Mp 174–176 °C. Yield: 0.115 g, 40%. IR ν_{max} (cm⁻¹): 1645 (C=O), 1598, 1561, 1483, and 1165. ¹H NMR (CDCl₃) δ : 2.38 (s, 3H, C₃-CH₃), 3.39 (s, 3H, C₆-CH₃), 4.01 (s, 3H, N_{12} -CH₃), 7.17–7.80 (m, 6H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-H), 8.10 (s, 1H, C₄-H). ¹³C NMR (CDCl₃) δ : 18.8 (C₃-CH₃), 28.6 (C₆-CH₃), 43.0 (N_{12} -CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.5 (C₁), 127.9 (C₄), 128.0 (C₂), 129.7 (C₃), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 151.4 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 288 (M⁺, 100), 287 (45), 273 (17), 258 (16), 257 (18), 166 (18), 77 (32), 44 (72). Anal. calcd. for C₁₉H₁₆N₂O: C, 79.17; H, 5.56; N, 9.72. Found: C, 79.25; H, 5.61; N, 9.70%.

Compound 10b. Pale yellow needles. Mp 172–174 °C. Yield: 0.124 g, 43%. IR ν_{max} (cm⁻¹): 1642 (C=O), 1594, 1558, 1487, and 1161. ¹H NMR (CDCl₃) δ : 2.55 (s, 3H, C₁-CH₃), 3.36 (s, 3H, C₆-CH₃), 4.09 (s, 3H, N_{12} -CH₃), 7.17–7.92 (m, 6H, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-H), 8.20 (d, 1H, C₄-H, J=8.21 Hz). ¹³C NMR (CDCl₃) δ : 16.8 (C₁-CH₃), 28.6 (C₆-CH₃), 43.0 (N_{12} -CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.5 (C₃), 127.7 (C₄), 127.9 (C₂), 130.4 (C₁), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.4 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 288 (M⁺, 100), 287 (33), 273 (24), 258 (11), 257 (12), 166 (14), 77 (22), 44 (70). Anal. calcd. for C₁₉H₁₆N₂O: C, 79.17; H, 5.56; N, 9.72. Found: C, 79.22; H, 5.64; N, 9.66%.

Compound 10c. Pale yellow solid. Mp 178–180 °C. Yield: 0.117 g, 38%. IR ν_{max} (cm⁻¹): 1640 (C=O), 1610, 1558, 1484, and 1170. ¹H NMR (CDCl₃) δ : 3.35 (s, 3H, C₆-CH₃), 4.23 (s, 3H, N₁₂-CH₃), 7.25–7.98 (m, 6H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-H), 8.27 (d, 1H, C₄-H, J = 2.56 Hz). ¹³C NMR (CDCl₃) δ : 28.6 (C₆-CH₃), 43.0 (N₁₂-CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.1 (C₁), 127.7 (C₄), 127.9 (C₂), 129.2 (C₃), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6

(C_{10a}), 150.4 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 310/308 (M⁺, 19/82), 307 (100), 293 (20), 273 (16), 272 (25), 166 (16), 77 (44), 41 (68). Anal. calcd. for C₁₈H₁₃N₂ClO: C, 70.13; H, 4.22; N, 9.09. Found: C, 70.01; H, 4.29; N, 9.13%.

Compound 10d. Pale yellow prisms. Mp 171–173 °C. Yield: 0.112 g, 41%. IR ν_{max} (cm⁻¹): 1648 (C=O), 1600, 1557, 1475, and 1171. ¹H NMR (CDCl₃) δ : 3.34 (s, 3H, C₆-CH₃), 4.18 (s, 3H, N_{12} -CH₃), 7.54–7.90 (m, 7H, C₁-, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-H), 8.25 (d, 1H, C₄-H, J = 8.39 Hz). ¹³C NMR (CDCl₃) δ : 28.6 (C₆-CH₃), 43.0 (N_{12} -CH₃), 121.3 (C₈), 122.1 (C₇), 126.5 (C₁₀), 127.4 (C₉), 127.2 (C₁), 127.7 (C₄), 127.9 (C₂), 129.2 (C₃), 137.9 (C₆), 138.6 (C_{6a}), 147.6 (C_{4a}), 148.2 (C_{5a}), 149.6 (C_{10a}), 150.4 (C_{12a}), 153.2 (C_{11a}), 180.4 (C=O). MS: m/z (%) 274 (M⁺, 100), 273 (33), 261 (18), 248 (19), 247 (10), 166 (23), 77 (55), 41 (44). Anal. calcd. for C₁₈H₁₄N₂O: C, 78.83; H, 5.11; N, 10.22. Found: C, 78.78; H, 5.00; N, 10.26%.

Compound 11a. Pale yellow needles. Mp 182–184 °C. Yield: 0.154 g, 44%. IR ν_{max} (cm⁻¹): 1648 (C=O), 1602, 1565, 1480, and 1175. ¹H NMR (CDCl₃) δ : 2.37 (s, 3H, C₃-CH₃), 4.09 (s, 3H, N_{12} -CH₃), 7.23–7.90 (m, 11H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'_5-, C'_6-H), 7.96 (s, 1H, C₄-H). ¹³C NMR (CDCl₃) δ : 18.6 (C₃-CH₃), 43.2 (N_{12} -CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.8 (C₁), 128.0 (C₄), 128.2 (C₂), 129.8 (C₃), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.8 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.5 (C_{12a}), 153.7 (C_{11a}), 179.6 (C=O). MS: m/z (%) 350 (M⁺, 100), 349 (35), 335 (14), 320 (12), 319 (18), 272 (10), 166 (19), 77 (38). Anal. calcd. for C₂₄H₁₈N₂O: C, 82.29; H, 5.14; N, 8.00. Found: C, 82.36; H, 5.11; N, 8.06%.

Compound 11b. Pale yellow needles. Mp 180–182 °C. Yield: 0.181 g, 47%. IR ν_{max} (cm⁻¹): 1645 (C=O), 1607, 1568, 1484, and 1169. ¹H NMR (CDCl₃) & 2.55 (s, 3H, C₁-CH₃), 4.11 (s, 3H, N_{12} -CH₃), 7.17–7.92 (m, 11H, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅-, and C'₆-H), 8.21 (d, 1H, C₄-H, J = 8.30 Hz. ¹³C NMR (CDCl₃) & 16.8 (C₁-CH₃), 43.2 (N_{12} -CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.6 (C₃), 127.8 (C₄), 128.0 (C₂), 130.4 (C₁), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.5 (C_{12a}), 153.7 (C_{11a}), 179.6 (C=O). MS: m/z (%) 350 (M⁺, 100), 349 (35), 335 (14), 320 (12), 319 (18), 272 (10), 166 (19), 77 (38). Anal. calcd. for C₂₄H₁₈N₂O: C, 82.29; H, 5.14; N, 8.00. Found: C, 82.36; H, 5.11; N, 8.06%.

Compound 11c. Pale yellow solid. Mp 186–188 °C. Yield: 0.152 g, 41%. IR ν_{max} (cm⁻¹): 1642 (C=O), 1605, 1560, 1481, and 1175. ¹H NMR (CDCl₃) δ : 4.21 (s, 3H, N_{12} -CH₃), 7.26–7.97 (m, 11H, C₁-, C₂-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅-, C'₆-H), 8.27 (d, 1H, C₄-H, J=2.46 Hz). ¹³C NMR (CDCl₃) δ : 43.2 (N_{12} -CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.8 (C₁), 128.0 (C₄), 128.1 (C₂), 129.3 (C₃), 133.4 (C'₁), 137.3 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.5 (C_{12a}), 153.7 (C_{11a}), 179.6 (C=O). MS: m/z (%) 372/370 (M⁺, 22/80), 369 (100), 355 (20), 335 (32), 334 (15), 166 (18), 77 (74), 41 (55). Anal. calcd. for C₂₃H₁₅N₂ClO: C, 74.60; H, 4.05; N, 7.57. Found: C, 74.65; H, 3.98; N, 7.63%.

Compound 11d. Pale yellow prisms. Mp 179–181 °C. Yield: 0.141 g, 42%. IR ν_{max} (cm⁻¹): 1645 (C=O), 1606, 1560, 1477, and 1170. ¹H NMR (CDCl₃) δ :

4.16 (s, 3H, N_{12} -CH₃), 7.54–7.90 (m, 12H, C₁-, C₂-, C₃-, C₇-, C₈-, C₉-, C₁₀-, C'₂-, C'₃-, C'₄-, C'₅- and C'₆-H), 8.19 (d, 1H, C₄-H, J = 8.44 Hz). ¹³C NMR (CDCl₃) δ : 43.2 (N_{12} -CH₃), 121.0 (C₈), 122.7 (C₇), 125.8 (C'₂, C'₆), 126.2 (C'₃, C'₄, C'₅), 126.7 (C₁₀), 127.6 (C₉), 127.7 (C₁), 128.1 (C₄), 128.8 (C₃), 129.2 (C₂), 133.4 (C'₁), 137.1 (C₆), 138.8 (C_{6a}), 147.6 (C_{4a}), 148.3 (C_{5a}), 149.7 (C_{10a}), 151.5 (C_{12a}), 153.7 (C_{11a}), 179.6 (C=O). MS: m/z (%) 336 (M⁺, 100), 335 (27), 322 (17), 321 (20), 252 (13), 166 (24), 77 (58), 41 (49). Anal. calcd. for C₂₃H₁₅N₂ClO: C, 82.14; H, 4.76; N, 8.33. Found: C, 82.05; H, 4.81; N, 8.37%.

ACKNOWLEDGMENTS

The authors thank Indian Institute of Science (IISc), Bangalore, Madurai Kamaraj University (MKU), Madurai, for NMR and the Indian Institute of Chemical Technology, Hyderabad for mass spectral data. The authors acknowledge the University Grants Commission, New Delhi, India, for the financial assistance under Grant No. F31-122/2005.

REFERENCES

- Gemma, S.; Kukreja, G.; Tripaldi, P.; Altarelli, M.; Berrnetti, M.; Franceschini, S.; Savini, L.; Campiani, G.; Fotterusso, C.; Butini, S. Microwave-assisted synthesis of 4-quinolylhydrazines followed by nickel boride reduction: A convenient approach to 4-amino quinolines and derivatives. *Tetrahedron Lett.* 2008, 49, 2074–2077.
- Curd, F. H. S.; Raison, C. G.; Rose, F. L. Synthetic antimalarials: Some arylamino-aminoalkyl quinoline derivatives. J. Chem. Soc. 1947, 899–909.
- Price, C. C.; Maynert, E. W.; Boekelheide, V. Some 4,8-diaminoquinolines. J. Org. Chem. 1949, 484–487.
- Rossiter, S.; Peron, J. M.; Whitfield, P. J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. *Bioorg. Med. Chem. Lett.* 2005, 15, 4806–4808.
- Chandra, A.; Singh, B.; Upadhyay, S.; Singh, R. M. Copper-free Sonogashira coupling of 2-chloroquinolines with phenyl acetylene and quick annulations to benzo[b][1,6]naphthyridine derivatives in aqueous ammonia. *Tetrahedron* 2008, 64, 11680–11685.
- Zhu, S.; Zhang, Q.; Gudise, C.; Meng, L.; Wei, L.; Smith, E.; Kong, Y. Synthesis and evaluation of naphthyridine compounds as antimalarial agents. *Bioorg. Med. Chem. Lett.* 2007, 17, 6101–6106.
- Manera, C.; Cascio, M. G.; Benetti, V.; Allana, M.; Tuccinardi, T.; Martinelli, A.; Saccomanni, G.; Vivoli, E.; Ghelardini, C.; Di Marzo, V.; Ferrarini, P. L. New 1,8-naphthyridine and quinoline derivatives as CB₂ selective agonists. *Bioorg. Med. Chem. Lett.* 2007, 17, 6505–6510.
- Tsuzuki, Y.; Tomita, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8naphthyridines as novel antitumor agents. *Bioorg. Med. Chem. Lett.* 2004, 14, 3189–3193.
- Zhuang, L.; Wai, J. S.; Embrey, M. W.; Fisher, T. E.; Egbertson, M. S.; Payne, L. S.; Guare, J. P.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Leonard, Y. M.; Lynch, J. J.; Michelson, S. R.; Young, S. D. Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. *J. Med. Chem.* 2003, 46, 453–456.

- Atanasova, M.; Ilieva, S.; Galabov, B. QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines with anticancer activity. *Eur. J. Med. Chem.* 2007, 42, 1184–1192.
- 11. Mato, A. F.; Blanco, G.; Quintela, J. M.; Peinador, C. Synthesis of new bis(2-[1,8] naphthyridinyl) bridging ligands with multidentate bridging sites. *Tetrahedron* **2008**, *64*, 3446–3456.
- Gopalsamy, A.; Shi, M.; Boschelli, D. H.; Williamson, R.; Olland, A.; Hu, Y.; Krishnamurthy, G.; Han, X.; Arndt, K.; Guo, B. Discovery of dibenzo[*c*,*f*][2,7]naphthyridines as potent and selective 3-phosphoinositide-dependent kinase-1inhibitors. *J. Med. Chem.* 2007, *50*, 5547–5549.
- Ban, H.; Muraoka, M.; Ohashi, N. A convenient synthesis of 4-aryl-1,8-naphthyridin-2(1H)-ones by the Suzuki coupling. *Tetrahedron Lett.* 2003, 44, 6021–6023.
- Wang, Y. D.; Boschelli, D. H.; Johnson, S.; Honores, E. A facile one-pot synthesis of 2-substituted-3-aminoquinolines: Preparation of benzo[b]naphthyridine-3-carbonitriles. *Tetrahedron* 2004, 60, 2937–2942.
- Hutton, S. M.; Mackay, S. P.; Meth-Cohn, O. Synthesis of dibenzo[*c*,*h*][1,6]naphthyridine, [2]benzopyrano[4,3-*c*]quinoline, and benzo[*i*]phenanthridine analogs of the quaternary benzo[*c*]phenanthridines. *Synthesis* 2000, 1121–1124.
- Sekar, M.; Prasad, K. J. R. Synthesis of [b,h][1,6]naphrhyridin-5,6-diones. Indian J. Chem., Sect. B 1999, 38, 969–971.
- Da Settimo, A.; Biaji, G.; Primfiore, G.; Ferrarini, P. L.; Livi, O.; Marini, A. M. Synthesis of some 3,7-disubstituted quino[3,2-c][1,8]naphthyridines. J. Heterocycl. Chem. 1980, 17, 1225–1229.
- Kidwai, M.; Kohli, S. Synthesis of dibenzo[b,g]-5-methyl-1,8-naphthyridines. Indian J. Chem., Sect. B 2001, 40, 248–249.
- 19. Buchman, F. J.; Hamilton, C. S. Synthesis in the quinoline series, 2,4-disubstituted quinoline derivatives. J. Am. Chem. Soc. 1942, 1357–1360.
- Reddy, E. A.; Barange, D. K.; Islam, A.; Mukkanti, K.; Pal, M. Synthesis of 2-alkynyl quinolines from 2-chloro and 2,4-dichloroquinoline via Pd/C-catalyzed coupling reaction in water. *Tetrahedron* 2008, 64, 7143–7150.
- 21. Kulkarni. Review of ether cleavage. Synthesis 1983, 249-282.