

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 4029-4032

Synthesis and structure–activity relationship of imidazo[1,2-*a*]benzimidazoles as corticotropin-releasing factor 1 receptor antagonists

Xiaojun Han,* Sokhom S. Pin, Kevin Burris,[†] Lawrence K. Fung,[‡] Stella Huang, Matthew T. Taber, Jie Zhang[§] and Gene M. Dubowchik*

> Pharmaceutical Research Institute, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA

> > Received 31 March 2005; revised 24 May 2005; accepted 7 June 2005 Available online 27 June 2005

Abstract—8-Aryl-1,3a,8-triaza-cyclopenta[a]indenes represent a novel series of high binding affinity corticotropin-releasing factor 1 receptor antagonists. Here, we report their synthesis, SAR, and pharmacokinetic properties of compound **8e** ($K_i = 23$ nM). © 2005 Elsevier Ltd. All rights reserved.

Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted in the hippocampus. It imposes its physiological effects on depression and other neuropsychiatric disorders via the hypothalamic–pituitary–adrenal (HPA) axis.¹ The CRF receptor, a G-protein-coupled receptor, has two well-characterized subtypes (CRF1 and CRF2).² Compelling clinical evidence supports the hypothesis that overproduction of CRF may underlie the pathology of depression, anxiety, and stress-related disorders, and suggests that antagonists of CRF1R could be useful for the treatment of these conditions.¹

As described in our preceding article,³ we have synthesized 1-aryl-2,3-dihydro-imidazoimidazoles (I) (Fig. 1) as CRF1R antagonists. An exemplary compound (X,Y,Z = Me, $R^1 = Et$, $R^2 = nPr$ and $R^3 = cPrCH_2$) had relatively good binding affinity ($K_i = 42$ nM) and

0960-894X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.06.028

Figure 1. Small molecule CRF1R antagonists.

reasonable pharmacokinetic properties, and it demonstrated anxiolytic activity in a mouse canopy model. In the search for more potent compounds, we elaborated the core structure I with a phenyl ring as shown in Figure 1. In this article, we report our efforts on the design, synthesis, and SAR studies of a novel series of imidazo[1,2-a]benzimidazole CRF1R antagonists.

The synthesis of these compounds is outlined in Schemes 1 and 2. The reaction of substituted anilines 1 with *o*-fluoronitrobenzene 2 afforded *o*-nitroanilines 3.⁴ Reduction to the corresponding diamines 4 was effected by hydrogenation for 2,4,6-trimethyl-substituted anilines, and with Na₂S₂O₄/NH₄OH for chloro- and bromosubstituted anilines to avoid reduction of the halides.⁵ 2-Aminobenzimidazoles 5 were formed by the reaction of 4 with cyanogen bromide in ethanol at 150 °C,⁶ followed by alkylation with ethyl bromoacetate in acetone

Keywords: Corticotropin-releasing factor 1; Antagonists; SAR; Pharmacokinetic properties.

^{*}Corresponding authors. Tel.: +1 203 677 7879; fax: +1 203 677 7702; e-mail addresses: xiaojun.han@bms.com; gene.dubowchick@bms.com

[†]Present address: Palatin Technologies Inc., 4-C Cedar Brook Drive, Cranbury, NJ 08512, USA.

[‡]Present address: Neurogen Corp., 35 N.E. Industrial Rd., Branford, CT 06405, USA.

[§] Present address: Sanofi Aventis, 1041 Route 202-206, Bridgewater, NJ 08807, USA.

Scheme 1. Reagents and conditions: (a) KF, 180 °C, 48–72 h, 20–100%. (b) i—1 atm H₂, Pd/C (10%), EtOAc, rt, 4 h, 80–85%; or ii—Na₂S₂O₄, THF/H₂O/concd NH₄OH (1:1:1), rt, 16 h, 60–80%. (c) i—BrCN, EtOH, 150 °C, 40 min; ii—1.2 equiv BrCH₂CO₂Et, acetone, 65 °C, 16 h. 70–95%. (d) 2.5 equiv R¹CO₂Na, (R¹CO)₂O, 150–180 °C, 20 h, 40–76%; (e) R²NHR³, AlMe₃, PhMe, 80 °C, 14 h, 60–90%; (f) Red-Al, PhMe, rt, 24 h, 50–70%.

Scheme 2. Reagents and conditions: (a) 5 equiv *i*-Bu₂AlH, PhMe, 0 °C, 1 h, 80–100%. (b) 2 equiv SOCl₂, CH₂Cl₂, 0 °C, 1 h; (c) 5 equiv R^2NHR^3 .HCl, 7 equiv *i*-Pr₂NEt (or 5 equiv R^2NHR^3 , 2 equiv *i*-Pr₂NEt, MeCN, rt, 1 h, then chlorides **9**, rt, 24 h, 50–70% for two steps.

at reflux. Condensation with acetic, propionic, or trifluoroacetic anhydride along with the respective sodium salt at 160 °C afforded esters 6.⁷ Because of the volatility of trifluoroacetic anhydride (bp = 40 °C), esters 6 where $R^1 = CF_3$ were prepared in a sealed bomb. Weinreb amidation⁸ of esters 6 formed amides 7, and the Red-Al reduction of amides 7 afforded amines 8.⁹

Amines 8 could also be efficiently synthesized in a parallel fashion (Scheme 2) using a variety of secondary (and primary) amines. This was especially convenient, since the CRF1R is tolerant of diversity in this area. The DIBAL-H reduction of esters 6 cleanly afforded the corresponding alcohol with minimal workup.¹⁰ These alcohols were treated with SOCl₂ briefly to form chlorides 9 that, after concentration in vacuo, were treated with a variety of secondary amines in acetonitrile to give amines 8 in good yields.

Initial SAR studies focused on amide (Fig. 1, II, W = O) versus amine (Fig. 1, II, $W = H_2$) functionality, preferences for the small alkyl group on the A ring (R¹), and fluoro substitution on the C ring. CRF1Rbinding affinities were determined as described previously,¹¹ and the results are summarized in Table 1. Table 1. hCRF1R-binding affinities of amides 7a-e and amines 8a-e

In the related dihydroimidazoimidazole series,³ amides displayed better potency than corresponding amines. However, in this series, amines showed a >10-fold potency advantage (8a-e vs. 7a-e). This is similar to what was seen with a previous series of arylaminothiazoles.¹³ For amines ($\hat{W} = H_2$), there was a little difference when R^1 was Me, Et, or CF_3 (8a, 8c, and 8e). However, long-term hydrolytic stability was only ensured when at least one electron withdrawing group $(R^1 = CF_3)$ was present on the core.¹³ Therefore, it was hoped that, instead of the rather lipophilic CF_3 at \mathbf{R}^{1} , a single fluorine on the C ring would permit methyl or ethyl substitution at \mathbf{R}^1 . Although **8b** and 8d were sufficiently stable (data not shown), fluorination resulted in a 3- to 8-fold loss of potency for amines and amides (8b,d vs. 8a,c).

A series of aminomethyltrifluoromethylimidazoles using a small set of amine substituents was prepared next to probe the requirement for 2,4- versus 2,4,6-aryl substitution on the pendant aryl ring. In some fused bicyclic aromatic CRF antagonist chemotypes, 2,4,-disubstitution resulted in high affinity binding, while in others activity was greatly diminished.¹⁴ This appeared to depend on the presence of a substituent on the B ring that projected into the 'ortho-space' of the pendant aryl ring, presumably helping to enforce an orthogonal conformation. As given in Table 2, 2,4,6-trisubstitution (**8e**–**g**) is clearly preferred for this core structure, with the bulkier substituents on **8h–j** provided some advantage over the smaller chlorines in **8k–m**.

Lastly, we explored some SAR of the aminomethyl side chains. Additional polar atoms were avoided since their presence abolished the activity in related series.^{3,13} The results are summarized in Table 3. Interestingly, while 'benzyl-like' cyclopropylmethyl-containing compounds showed better binding potency than cyclopropylethyl compounds (**8f** vs. **8aa**, **8o** vs. **8cc**, and **8n** vs. **8ff**), phenylethyl derivatives were clearly superior to benzyl-containing compounds (**8g** vs. **8ll** and **8x** vs. **8jj**). Clearly,

Table 2. The effects of aryl substitutions on hCRF1R-binding affinities

Compound	Х	Y	Z	\mathbb{R}^2	R ³	$K_{\rm i}$ (nM)
8f	Me	Me	Me	cPrCH ₂	cPrCH ₂	11
8e	Me	Me	Me	cPrCH ₂	nPr	23
8g	Me	Me	Me	PhCH ₂ CH ₂	nPr	250
8h	Br	<i>i</i> -Pr	Н	cPrCH ₂	$cPrCH_2$	54
8i	Br	<i>i</i> -Pr	Н	cPrCH ₂	Pr	150
8j	Br	<i>i</i> -Pr	Н	PhCH ₂ CH ₂	nPr	410
8k	Cl	Cl	Н	$cPrCH_2$	$cPrCH_2$	240
81	Cl	Cl	Н	$cPrCH_2$	nPr	370
8m	Cl	Cl	Н	PhCH ₂ CH ₂	nPr	1600

Table 3. The effects of amine substitutions on hCRF1R-binding affinities

Compound	\mathbb{R}^2	R ³	K _i (nM)
8n	cPrCH ₂	CF ₃ CH ₂	7.1
80	cPrCH ₂	CF ₃ CH ₂ CH ₂	13
8p	cBuCH ₂	nPr	26
8q	cPrCH ₂	Et	28
8r	$cPrCH_2$	CF ₃ CF ₂ CH ₂	34
8s	cBuCH ₂	CF_3CH_2	53
8t	CF ₃ CH ₂ CH ₂	nPr	68
8u	CF ₃ CF ₂ CH ₂	nPr	75
8v	CF ₃ CH ₂	nPr	75
8w	Allyl	Allyl	138
8x	PhCH ₂ CH ₂	Et	249
8y	CF ₃ CH ₂ CH ₂	CF_3CH_2	291
8z	PhCH ₂ CH ₂	PhCH ₂ CH ₂	333
8aa	cPrCH ₂ CH ₂	nPr	362
8bb	PhCH ₂	CF ₃ CH ₂ CH ₂	428
8cc	cPrCH ₂ CH ₂	CF ₃ CH ₂ CH ₂	457
8dd	PhCH ₂	Me	573
8ee	PhCH ₂ CH ₂	CF ₃ CH ₂ CH ₂	618
8ff	cPrCH ₂ CH ₂	CF ₃ CH ₂	653
8gg	Et	nBu	704
8hh	PhCH ₂ CH ₂	CF ₃ CH ₂	744
8ii	cPrCH ₂ CH ₂	Et	1412
8jj	PhCH ₂	Et	2774
8kk	PhCH ₂ CH ₂	Et	3388
811	PhCH ₂	nPr	4049
8mm	PhCH ₂	nBu	7708

and as seen in our other studies,^{3,13} the binding pocket available for these residues is comparatively small and favors aromatic character. Trifluorination of the other side chain (\mathbb{R}^3) was preferred to a greater (**8n** vs. **8q**) or lesser extent (**8e** vs. **8o**).

Table 4. Rat PK parameters for 8e (10 mg/kg, p.o.; 2 mg/kg, i.v.)^a

	1	0 0 1	
Cl			5.1 mL/min/kg
$V_{\rm d}$			0.6 L/kg
t _{1/2}			4.1 h
F _{p.o.}			35%
AUC (plasma,	p.o.)		11438 ng h/mL
C_{\max}			2380 ng/mL
B/P (2 h)			0.03

^a Dosing vehicle was 10/10/80 Cremphor/DMSO/water. Dosing volumes were 1 and 3 mL/kg for i.v. and p.o., respectively. Brain-toplasma concentration ratio (B/P) was determined after i.v. administration.

Compound **8e** was chosen for in vivo pharmacokinetic profiling (Table 4). In rats, **8e** had a low plasma clearance, low volume of distribution, moderate terminal half-life, acceptable oral bioavailability, but essentially no brain penetration.

In summary, imidazo[1,2-*a*]benzimidazoles represent a new series of CRF1R antagonists with good receptorbinding affinities. Efforts to improve the physiochemical properties of this series to improve brain penetration will be reported shortly.

Acknowledgments

We thank Dr. John Macor and Dr. Joanne Bronson for critical reading of the manuscript.

References and notes

 (a) Contoreggi, C.; Ayala, A.; Grant, S.; Eckelman, W.; Webster, E.; Rice, K. C. Drug of Future 2002, 27, 1093; (b) Páez-Pereda, M.; Arzt, E.; Stalla, G. K. Expert Opin. Ther. Patents 2002, 12, 1537; (c) Dinan, T. G. Hum. Psychopharmacol. Clin. Exp. 2001, 16, 89; (d) O'Brien, D.; Skelton, K. H.; Owens, M. J.; Nemeroff, C. B. Hum. Psychopharmacol. Clin. Exp. 2001, 16, 81.

- Hauger, R. L.; Grigoriadis, D. E.; Dallman, M. F.; Plotsky, P. M.; Vale, W. W.; Dautzenberg, F. M. *Pharmacol. Rev.* 2003, 55, 21.
- Han, X.; Michne, J. A.; Pin, S. S.; Burris, K.; Balanda, L. A.; Fung, L.; Fiedler, T.; Browman, K. E.; Taber, M. T.; Zhang, J.; Dubowchik, G. M. *Bioorg. Med. Chem. Lett.* 2005, 15, 3870.
- 4. Kulagowski, J. J.; Rees, C. W. Synthesis 1980, 215.
- 5. Redemann, C. T.; Redemann, C. E. Org. Syn. Coll. Vol. 1955, 3, 69.
- 6. Scherz, M. W.; Fialeix, M.; Fischer, J. B.; Reddy, N. L.; Server, A. C.; Sonders, M. S.; Tester, B. C.; Webber, E.; Wong, S. T.; Keana, J. F. W. *J. Med. Chem.* **1990**, *33*, 2421, The structure of bromide **5a** was confirmed by ¹H NMR studies. First, the CH₂ in -*CH*₂CO₂Et is a singlet, and there is no coupling between this CH₂ and NH; secondly, there are positive nOe observed between -*CH*₂CO₂Et and -NH₂ and also H¹.

- (a) Spasov, A. A.; Larionov, N. P.; Sibiryakova, T. B.; Verovskii, V. E.; Anisimova, V. A.; Dudchenko, G. P.; Baldenkov, G. N.; Men'shikov, M. Y. *Khim.-Farm. Zh.* **1998**, *32*, 17; (b) Anisimova, V. A.; Kuz'menko, T. A.; Spasov, A. A.; Bocharova, I. A.; Orobinskaya, T. A. *Pharm. J. Chem.* **1999**, *33*, 361.
- Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989.
- 9. All new compounds gave satisfactory analytical data. For **5a** (Ar = 2,4,6-trimethylphenyl, Q = H): ¹H NMR (CDCl₃, 500 MHz) δ 8.28 (br s, 2H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.14 (s, 2H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.73 (s, 2H), 4.30 (q, *J* = 7.1 Hz, 2H); 2.41 (s, 3H), 2.01 (s, 6H), 1.34 (t, *J* = 7.2 Hz, 3H). For **6a** (Ar = 2,4,6-trimethylphenyl, Q = H, R = CF₃): ¹H NMR (CDCl₃, 300 MHz) δ 8.76–8.73 (m, 1H), 7.43–7.34 (m, 2H), 7.08 (s, 2H), 7.01–6.98 (m, 1H), 4.54 (q, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 1.99 (s, 6H), 1.50 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 159.1, 147.0, 139.9, 139.1 (q, *J* = 39 Hz), 136.9, 135.7, 129.7, 129.5, 128.0, 125.4, 125.0, 121.9, 120.9 (q, *J* = 268 Hz), 116.4, 110.6, 61.4, 21.0, 17.6, 14.0. For **7a**: ¹H NMR (CDCl₃, 300 MHz) δ 7.86–7.82 (m, 1H), 7.23–

7.19 (m, 2H), 7.02 (s, 2H), 6.89-6.86 (m, 1H), 3.69 (t, *J* = 7.0 Hz, 2H), 3.49 (d, *J* = 6.9 Hz, 2H), 2.39 (s, 3H), 2.35 (s, 3H), 1.98 (s, 6H), 1.74–1.65 (m, 2H), 1.16–1.06 (m, 1H), 0.90 (t, J = 7.2 Hz, 3H), 0.59–0.53 (m, 2H), 0.23–0.20 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 163.7, 139.2, 137.0, 136.8, 135.2, 129.8, 129.6, 128.8, 124.8, 123.4, 121.0, 114.2, 113.1, 110.2, 51.1, 48.5, 21.0, 17.7, 15.4, 14.1, 11.2, 10.1, 3.7; Mass spec.: 428.32 (MH)⁺. For 8f: ¹H NMR (CDCl₃, 300 MHz) δ 8.09–8.06 (m, 1H), 7.37–7.33 (m, 2H), 7.04 (s, 2H), 6.97-6.94 (m, 1H), 4.95 (s, 2H), 3.27-3.16 (m, 4H), 2.22 (s, 3H), 1.96 (s, 6H), 1.87-1.79 (m, 2H), 1.23-1.20 (m, 1H), 0.97 (t, J = 7.2 Hz, 3H), 0.84–0.80 (m, 2H), 0.46–0.43 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 161.3 (q, J = 36.8 Hz), 148.4, 140.0, 137.0, 135.8, 129.8, 128.2, 128.0, 125.6, 123.9, 122.8 (q, J = 270 Hz), 122.0, 111.1, 110.3, 57.4, 53.1, 45.9, 21.1, 17.6, 17.3, 11.0, 5.5, 4.9; Mass spec.: 469.30 (MH)⁺.

- 10. For a description of the workup procedures, see Han, X.; Corey, E. J. Org. Lett. 2000, 2, 2543.
- 11. Membranes were prepared from IMR-32 cells as previously described¹² and incubated with [125 I]Tyr-*o*-CRF (100 pM) and increasing concentrations of test compound for 100 min at 25 °C (assay bufffer: 50 mM Tris (pH 7.2), 10 mM MgCl₂, 0.5% BSA, 0.005% Triton X-100, 0.01 mg/mL aprotinin, and 0.01 mg/mL leupeptin). Assays were stopped by the addition of ice-cold buffer. Nonspecific binding was defined with 0.01 mM *o*-CRF. These compounds are full antagonists of the CRF1R, as determined by their ability to inhibit CRF-stimulated cAMP production in IMR-32 cells.¹² Compound **8e** was also tested against the CRF2R and found to have IC₅₀ > 10 μ M.¹⁵
- 12. Dieterich, K. D.; DeSouza, E. B. Brain Res. 1996, 733, 113.
- Dubowchik, G. M.; Michne, J. A.; Zuev, D.; Schwartz, W.; Scola, P. M.; James, C. A.; Ruediger, E. H.; Pin, S. S.; Burris, K.; Balanda, L. A.; Gao, Q.; Wu, D.; Fung, L.; Fiedler, T.; Browman, K. E.; Taber, M. T.; Zhang, J. *Bioorg. Med. Chem. Lett.* 2003, 13, 3997.
- (a) Kehne, J. H.; Maynard, G. D.; De Lombaert, S.; Krause, J. E. Ann. Rep. Med. Chem. 2003, 38, 11; (b) Grigoriadis, D. E.; Haddach, M.; Ling, N.; Saunders, J. Curr. Med. Chem.—Central Nervous System Agents 2001, 1, 63; (c) Gilligan, P. J.; Robertson, D. W.; Zaczek, R. J. Med. Chem. 2000, 43, 1641; (d) Keller, P. A.; Elfick, L.; Garner, J.; Morgan, J.; McCluskey, A. Bioorg. Med. Chem. 2000, 8, 1213.
- Suman-Chauhan, N.; Carnell, P.; Franks, R.; Webdale, L.; Gee, N. S.; McNulty, S.; Rossant, C. J.; Van Leeuwen, D.; MacKenzie, R.; Hall, M. D. *Eur. J. Pharmacol.* 1999, *379*, 219.