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Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways 
in rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the 
regulation of airway surface liquid depth, pendrin inhibitors have potential indications for treat-
ment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-
pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine conden-
sation was been developed. Structure-activity relationships at the tetrahydropyridyl nitrogen 
were investigated using a focused library, establishing the privileged nature of N-phenyl ureas 
and improving inhibitor potency by greater than 2-fold. 
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Pendrin (PDS) is a 780 amino acid sodium-independent 
chloride/anion antiporter containing twelve putative 
transmembrane spanning domains and cytoplasmic amino and 
carboxy-termini.1 The PDS gene (SLC26A4) was identified by 
positional cloning in subjects with the autosomal recessive 
disorder Pendred syndrome, which is characterized by hearing 
impairment and thyroid goiter.2 Functional studies show that PDS 
mediates electroneutral exchange of Cl– with various anions 
including I–, HCO3

–, OH–, and SCN– at the apical membrane of 
epithelial cells in the inner ear, thyroid, kidney, airways, and 
adrenal gland.1, 3-8 PDS upregulation is observed in the airways of 
humans with rhinovirus infection, asthma, cystic fibrosis and 
chronic rhinosinusitis, in rodent models of inflammatory 
pulmonary disease including asthma, infection, and toxin 
exposure, and in airway epithelial cultures after exposure to 
inflammatory cytokines.9-19 PDS knockout reduces pathology in 
various mouse models of inflammatory lung diseases.15, 20 The 
mechanism of PDS involvement in pulmonary inflammation is 
thought to involve regulation of airway surface liquid (ASL) 
volume. Small molecule PDS inhibitors increase airway hydra-
tion in cytokine-stimulated human airway epithelial cultures.21 
Together, these studies support the therapeutic utility of PDS 
inhibitors for lung diseases including asthma and cystic 
fibrosis.22, 23

Prior screening of 36,000 synthetic, drug-like small molecules 
identified several chemical classes of PDS inhibitors containing a 
tetrahydro-1H-pyrazolo[4,3-c]pyridine (TPP) core, with the most 
potent compound having an IC50 of ~7 μM for both human and 
murine PDS (Fig 1A).21, 24 Analysis of commercially available 
TPP pendrin inhibitor analogs revealed minimal opportunities for 
mod- 

Fig 1. Previously identified inhibitors of SLC26A4 and SLC264A3 

ification of the pyrazole nitrogen or ether oxygen.21 While 
substitutions at the tetrahydropyridyl nitrogen were relatively 
underexplored in the commercial library, the sulfonamide moiety 

– one of the most privileged functional groups in drug 
discovery25 – was prevalent in PDS and SLC26A3 inhibitors 
discovered by high-throughput screening (Fig 1B).21, 26 We 
reasoned that developing a versatile route to TPP compounds 
would be valuable because chemical synthesis affords us the 
opportunity to generate a focused library at the tetrahydropyridyl 
nitrogen. Herein, we report the development of a completely 
regioselective route to the TPP core and structural analogs to 
further investigate structure–activity relationships for this class of 
compounds. 

Work began by resynthesizing the original active compound 
(1). However, controlling the position of the N-methyl group was 
a major challenge due to regioselectivity issues associated with 
pyrazole synthesis.27 Indeed, it is known that pyrazoles do not 
undergo selective N-alkylations and the reaction of N-substituted 
hydrazine with unsymmetrical 1,3-diketones is also not 
regioselective. Despite these challenges, the Knorr pyrazole 
synthesis remains one of the most robust and reliable methods for 
accessing these nitrogen heterocycles.27 In order to address this 
regioselectivity problem, we took advantage of the benzylic 
CH2–O moiety in the lead compound (Scheme 1). This moiety 
allowed us to attempt the Knorr pyrazole synthesis using an 1,3-
diketone with an electron withdrawing group attached (10). 
Theoretically, the presence of the electron withdrawing group 
should activate the α-carbonyl, allowing selective pyrazole 
formation to occur. 

Scheme 2. Regioselective synthesis of the lead compound. 
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Scheme 1. Retrosynthetic analysis.

The synthesis of 1 (Scheme 2) began with a Stork enamine 
synthesis between N-Boc piperidin-4-one and ethyl 2-chloro-2- 
oxoacetate. Hydrolysis of 13 using a biphasic system of DCM 
and aqueous HCl gave the ester-containing 1,3-diketone 10 in 
85% yield over 3 steps at 25 g scale. Next, methylhydrazine was 
refluxed with 10 to deliver pyrazole 7 as the only regioisomer in 
52% yield. Note, the reaction can also be stopped after just one 
day of reflux, but the yield of 7 decreases to 33%. Increasing the 

reaction time to three days did not give a higher yield of 7. 
Routine purification of pyrazole 7 was straightforward because 
the undesired regioisomer was not formed/detected throughout 
the course of the reaction. This reaction was repeated on large 
scale and the structure of 7 was confirmed using X-ray 
crystallography (Scheme 2). Subsequent reduction of 7 using 
LiBH4 gave the corresponding alcohol in 66% yield. Alcohol 6 
was converted to bromide 14 in 84% yield using an Appel 
reaction.28 It should be noted that NBS could be substituted 
completely by Br2 with little impact on the yield of the Appel 
reaction. Reaction of 3-fluorophenol with 14 under basic 
conditions gave the targeted ether in 90% yield. The Boc group 
of 15 was more resilient than expected, as deprotection using 
varying concentrations of HCl ranging from 1 to 6 M was 
ineffective in both methanol and dioxane. Boc deprotection was 
finally accomplished using TFA in DCM, followed by a basic 
work up to give amine 16. Reaction of 16 with 4-chlorophenyl 
isocyanate gave the lead compound 1 in 77% yield over the last 
two steps. The synthesized 1 had a similar potency compared to 
commercial 1 (Figure 2). 

As previously described, a functional cell-based assay of PDS-
mediated Cl–/I– exchange was used to measure the PDS inhibition 
activity of TPP analogs.21, 24 In brief, Fischer rat thyroid cells 
stably expressing murine PDS and a halide-sensitive fluorescent 
protein (EYFP-H148Q/I152L/F46L) were used. PDS activity was 
determined from the kinetics of fluorescence decrease in 
response to addition of an I–-containing solution to cells, with 
inhibitors reducing the rate of Cl–/I– exchange and hence the rate 
of reduction in fluorescence.

A small set of ether analogs were synthesized to address the 
effect of fluorine substitution (Table 1). These minor 
modifications improved PDS inhibition activity compared to 
compound 1. Analogs 17 and 18 inhibited PDS with IC50 of 4.6 
and 3.3 μM, while 3,5-difluoro-substituted 19 resulted in an IC50 
of 3.1 μM. Ester analog 20 and carboxylic acid analog 21 both 
had minimal PDS inhibition activity.

Table 1. Synthesized TPP with varying substitution at benzylic 
position and activity against PDS.
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Fig 2. Concentration-dependence for inhibition of pendrin anion 
exchange by synthesized and commercial 1, and by 19.

Moving forward, the effect of substitution at the 
tetrahydropyridine nitrogen was investigated (see Fig 1A). 
Although previous high-throughput screening revealed that 
sulfonamides were common structural features among hit 
compounds, minimal inhibition activity was observed when 
sulfonamides were introduced into the TPP scaffold even when 
the 4-chlorophenyl moiety was preserved (Table 2). Similarly,

Table 2. TPP with different substitution patterns at 
tetrahydropyridyl nitrogen and activity against PDS.

attempts to incorporate sulfur into the molecule via thioureas 
were not successful at increasing PDS inhibition activity. This 
series of analogs gave insights into the privileged nature of the N-
phenyl urea, as both alkyl and acylated ureas performed poorly.

In summary, we developed a completely regioselective route 
to tetrahydropyrazolopyridines and synthesized a focused library 
of analogs with substitution at the tetrahydropyridyl nitrogen. 
This chemistry allowed us to further investigate the structure-
activity relationship of this class of PDS inhibitors. Introduction 
of an additional fluorine atom significantly improved the IC50 
from ~7 μM to ~3 μM. Although the sulfur atom was well-
represented in other classes of SLC26 inhibitors, sulfur analogs 
such as thioureas, sulfonamides, and sulfuric diamide were not 
useful for PDS inhibition activity. Indeed, throughout the course 
of these studies. N-phenyl ureas were found to be highly 
privileged. 
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