SIMPLE METHODS FOR THE SYNTHESES OF (E)-4- AND (E)-5-ALKENOIC ACIDS BY THE SN2' TYPE REACTIONS OF Y-VINYL-Y-BUTYROLACTONE AND &-VINYL-&-VALEROLACTONE WITH ORGANOCOPPER REAGENTS

Tamotsu Fujisawa,* Toshio Sato, Masatoshi Kawashima, Kouichi Naruse, and Kouichi Tamai Chemistry Department of Resources, Mie University, Tsu, Mie 514, Japan

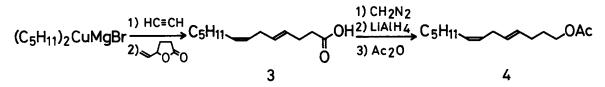
Summary: γ -Vinyl- γ -butyrolactone and δ -vinyl- δ -valerolactone react regio- and stereoselectively with Grignard reagents in the presence of a copper(I) catalyst or with diorganocuprates to afford (E)-4- and (E)-5-alkenoic acids, respectively, in high yields. Synthetic utility of the former reaction is demonstrated in the simple synthesis of (4E,72)-4,7-tridecadienyl acetate.

Nucleophilic ring-opening reaction of five- or six-membered lactones with organolithium compounds or Grignard reagents provide a useful method for natural product synthesis by virtue of carbon-carbon bond formation accompanying with proper functional groups.¹ These organometallic compounds attack generally to the carbonyl carbons of the lactones to give hydroxy ketone derivatives. On the other hand, a few example have been reported on the ring-opening between the ω -carbon and the ether oxygen of the lactones by the attack of organometallic compounds leading to carbon homologated carboxylic acids.^{2,3,4} We wish to describe here simple methods for the syntheses of (E)-4- and (E)-5-alkenoic acids (2 and 6) by the regio- and stereoselective ring-opening reactions of γ -vinyl- γ -butyrolactone (1) and δ -vinyl- δ -valerolactone (5) with organocopper reagents.⁵

When γ -vinyl- γ -butyrolactone (1)^{6,7} (1 equiv) was treated with butylmagnesium bromide (1.1 equiv) in THF-Me₂S (20:1) in the presence of copper(I) iodide (2 mol%) at -30 °C for 1 h, 4-decenoic acid (2; R = Bu), produced by the S_N2' type ring-opening reaction, was obtained in a high yield of 93% without any accompanying product by the S_N2 type reaction at the γ -carbon or by the attack to

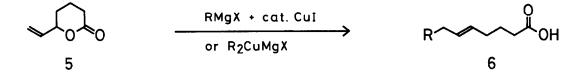
RMgX + cat. CuI or R₂CuMgX 2

the carbonyl carbon. Vpc analysis of 2 showed the predominance of the E isomer (E:Z = 86:14). The copper-catalyzed reaction of several representative Grignard reagents with 1 was summarized in Table I. Alkyl Grignard reagents attacked regioselectively to the terminal vinyl carbon of 1 to give (E)-4-alkenoic acids in high yields. However, phenyl-, vinyl-, and allylmagnesium bromide gave the corresponding acids in low yields.


Diorganocuprates, prepared from two equivalent of Grignard reagents and one equivalent of copper(I) iodide, reacted similarly with 1 at -30 °C for 30 min and then to room temperature for 30 min. The reactions of diphenyl-, divinyl-, and diallylcuprates gave the corresponding acids in much higher yields than that of the catalytic procedure (see Table I).

Although, (E)-4-alkenoic acids have been synthesized by the ester enolate Claisen rearrangement⁸ or by the Ramberg-Bäcklund rearrangement of 4-(1-bromo-alkylsulfonyl)butyric acid,⁹ the simplicity of the experimental procedure renders the present reaction attractive. The utility of the reaction was demonstrated in the short step synthesis of (4E,7Z)-4,7-tridecadien-1-yl acetate (4),¹⁰ the sex pheromone of *Phthorimaea operculella* as depicted below. Bromomagnesium di-(Z)-1-heptenylcuprate, prepared from pentylmagnesium bromide, copper(I) iodide and acetylene, was allowed to react with 1 in THF-Me₂S (10:1) at -30 °C for 13 h to

RMgX	Product	Yield(%)	E : Z
MeMgBr ^a	, ∽∽∽⊂ ^D L _{OH}	87	92 : 8
BuMgBr ^a	∽∽∽∽∽ ∽ ^µ _{OH}	93	86 : 14
s-BuMgCl ^a	∩ ↓ OH	90	83 : 17
t-BuMgCl ^a	ОН	91	78 : 12
PhMgBr ^a	PhOH	75	62 : 38
∽MgBr ^a	ОН	59	57:43
∕∕⁄MgBr ^a	ОН	9	92 : 8
Ph₂CuMgBr ^b	PhOH	91	82 : 18
(ℳ ₂ CuMgBr ^b	о	70	82 : 18
(ℳ ₂ CuMgBr ^b	S OH OH	41	86 : 14


Table I. Reaction of γ -Vinyl- γ -butyrolactone with Organocopper Reagents

^a All reactions were performed in THF-Me₂S (20:1) at -30 °C (1 h) in the presence of copper(I) iodide (2 mol%). All products were identified by IR and NMR spectra. ^b In these cases, diorganocuprates were used and the reactions were carried out in THF-Me₂S (10:1) at -30 °C (30 min) and then to room temperature (30 min).

give (4E,7Z)-4,7-tridecadienoic acid (3) in 87% yield. Esterification of 3, reduction with lithium aluminum hydride and acetylation afforded 4 (ZZ:ZE = 9:91) in 97% yield.

 δ -Vinyl- δ -valerolactone (5)¹¹ was also found to react regio- and stereoselectively with organocopper reagents as shown in Table I. Similar to the case of the reaction of γ -vinyl- γ -butyrolactone (1), S_N2' prodects of (E)-5-alkenoic acids (6) were obtained in high yields by the reaction of alkyl Grignard reagents, whereas phenyl, vinyl, and allyl Grignard reagents gave the acids in low yields.

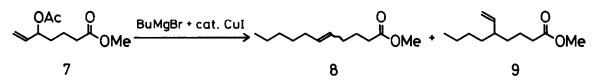

RMgX	Product	Yield(%)	E : Z
MeMgBr ^a	ОН	70	93:7
BuMgBr ^a	° ∧ ∧ ∧ ∧ ∪ _{OH}	95	88 : 12
s-BuMgCl ^a	O O H	94	83 : 17
t-BuMgCl ^a	↓ OH	78	75 : 25
PhMgBr ^a	Ph ~ ~ ~ U	56	67 : 33
	∽ ∕∕ ↓ _{OH}	28	67 : 33
MgBr ^a	O OH	trace	
Ph₂CuMgBr ^b	о Рh / ЮН	57	71 : 29
(∥) ₂ CuMgBr ^b	o ↓ OH	67	78 : 22
(ℳ) ₂ CuMgBr ^C	o OH	51	92:8

Table I. Read	tion of	δ-Vinyl	$-\delta$ -valerolacton	e with	Organocopper	Reagents
---------------	---------	---------	-------------------------	--------	--------------	----------

^a All reactions were performed in THF-Me₂S (20:1) at -45 °C (1 h) in the presence of copper(I) iodide (3 mol%). All products were identified by IR and NMR spectra. ^b Diorganocuprates were used, and the reactions were performed at -30 °C (1 h). ^C Diorganocuprate was used, and the reaction was carried out at -50 °C (1 h).

The use of divinyl- and diallylcuprates resulted in increasing the yields and the geometrical purity of the dienoic acids obtained.

Although acyclic allylic esters have been known to undergo S_N2' type reaction with organocopper reagents,^{3,12} the cyclic structure was found to be essential for high regio- and stereoselectivity as confirmed by the following result. When methyl 5-acetoxy-6-heptenoate was treated with butylmagnesium bromide in the presence of copper(I) iodide (3 mol%) in THF-Me₂S at -45 °C for 1 h, methyl (E)-, (Z)-5-undecenoate (8) and 5-vinylnonanoate (9) was obtained in 98% yield in the ratio of 52:40:8.

The regio- and stereoselective ring-opening reactions of γ -vinyl- γ -butyrolactone and δ -vinyl- δ -valerolactone provide very useful methods for six and seven carbon homologations with (E)-double bond terminating in a carboxyl function, which can be easily transformed to various functional groups.

References

- 1. For example, C. H. Lin and D. L. Alexander, J. Org. Chem., <u>47</u>, 615 (1982); T. Fukuyama, C.-L. J. Wang, and Y. Kishi, J. Am. Chem. Soc., <u>101</u>, 260 (1979); D. Taub, N. N. Girotra, R. D. Hoffsommer, C. H. Kuo, H. L. Slates, S. Webber, and N. L. Wendler, *Tetrahedron*, <u>24</u>, 2443 (1968). 2. E. J. Corey and J. Mann, *J. Am. Chem. Soc.*, <u>95</u>, 6832 (1973); S. M. Ali, M. A. W.
- Finch, and S. M. Roberts, J. Chem. Soc., Chem. Commun., <u>1979</u>, 679.
- 3. S_N2' type reaction of γ -isopropenyl- γ -butyrolactone with lithium dimethyl-cuprate was reported; R. J. Anderson, C. A. Henrick, and J. B. Siddall, J. Am. Chem. Soc., <u>92</u>, 735 (1970).
- 4. For this type of ring-opening of β -lactone, see T. Fujisawa, T. Sato, T. Kawara, M. Kawashima, H. Shimizu, and Y. Itoh, *Tetrahedron Lett.*, <u>21</u>, 2181 (1980); T. Sato, T. Kawara, M. Kawashima, and T. Fujisawa, *Chem. Lett.*, <u>1980</u>, 571; T. Sato, M. Takeuchi, T. Itoh, M. Kawashima, and T. Fujisawa, *Tetrahedron Lett.*, <u>22</u>, 1817 (1981); T. Fujisawa, T. Sato, M. Kawashima, and M. Nakagawa, *Chem. Lett.*, <u>1981</u>, 1307; T. Sato, M. Kawashima, and T. Fujisawa, *Tetrahedron* Lett., 22, 2375 (1981).
- 5. S_N2' type reaction of substituted ω -vinyl lactones with isopentylcyanocuprate have been reported independently; B. M. Trost and T. P. Klun, J. Org. Chem., 45, 4256 (1980).
- 6. S. F. Birch, R. A. Dean, and N. J. Hunter, J. Org. Chem., <u>23</u>, 1390 (1958).
- 7. The lactone 1 was prepared as follows. Addition of 3.3-trimethylenedioxypropylmagnesium bromide to acrolein and treatment with ethanol gave 2-ethoxy-5-vinyltetrahydrofurane, which was oxidized to 1 by the procedure of Grieco $et \ al.$; P. A. Grieco, T. Oguri, and Y. Yokoyama, *Tetrahedron Lett.*, <u>1978</u>, 419.
- 8. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., 98, 2868 (1976).
- 9. D. Scholz, Chem. Ber., <u>114</u>, 909 (1981). 10. S. Voerman and G. H. L. Rothschild, J. Chem. Ecol., <u>4</u>, 531 (1978); A. Alexakis, G. Cahiez, and J. F. Normant, *Tetrahedron Lett.*, <u>1978</u>, 2027. 11. The lactone 5 was prepared by addition of lithium acetylide to methyl γ -
- formylbutyrate, followed by cyclization and the Lindlar reduction; bp 88 \sim 91 °C/1.5 mmHg.
- 12. G. H. Posner, Org. React., <u>22</u>, 253 (1975); C. Fouquet and M. Schlosser, Angew. Chem. Int. Ed. Engl., <u>13</u>, 82 (1974).

(Received in Japan 17 May 1982)

3586