

Subscriber access provided by Gothenburg University Library

Letter

Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes

Sebastian Bas, Yasuhiro Yamashita, and Shu Kobayashi

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.0c02716 • Publication Date (Web): 27 Jul 2020

Downloaded from pubs.acs.org on July 27, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 2 **ACS** Catalysis

Development of Brønsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond

Formation Reactions of Malonates with Styrenes

Sebastian Baś, Yasuhiro Yamashita* and Shū Kobayashi*

Department of Chemistry, School of Science, The University of Tokyo Bunkyo-ku, Tokyo, 113-0033, Japan

KEYWORDS photocatalysis • hybrid catalysis • Brønsted base • malonates • radical process.

ABSTRACT: Brønsted base–photocatalyst hybrid systems have been developed for reactions of malonates with styrene derivatives. The concept of this process lies in the photooxidation of catalytic amounts of the enolate to form reactive radicals that react with alkene double bonds under mild reaction conditions. This is an example of visible light activated C–C bond formation reactions of malonates with alkenes to realize high atom economy under very mild reaction conditions without using any transition metal catalysts.

Nucleophilic addition of carbanions to alkenes is recognized as one of the most efficient C-C bond formation reactions.^{1,2} In particular, when carbanions are generated from stable and readily available precursors using catalysts, the process is ideal in terms of atom economy since simple proton transfer occurs from starting materials to products via catalytic amounts of carbanions. Malonic acid esters (malonates) are readily available and their functional groups can be easily converted into the desired target molecules; thus, they are often employed as precursors of carbanions. While the corresponding enolates are known to be stabilized carbanions, their nucleophilicity is generally not sufficient for reactions with alkenes without any electronwithdrawing groups (simple alkenes). Reactions of malonates with such alkenes catalyzed by transition metals have been investigated; however, stoichiometric amounts of Brønsted bases are needed in most cases.³ Towards truly efficient catalytic processes, we focused on the development of reactions of malonates with alkenes that proceed through the formation of radicals using catalytic amounts of Brønsted base and redox activator without using any transition metal catalysts.

Although reactions of malonates with simple alkenes via single-electron photooxidation (SET) have been reported, strong UV-light and the use of a large excess of base and malonate are required (Scheme 1A).^{4,5} On the other hand, reactions of 1,3-dicarbonyl radicals generated via SET with alkenes promoted by a catalytic amount of $Mn(OAc)_2$ and a stoichiometric amount of oxidant was disclosed; however, acetic acid was needed as a solvent and applicable substrates were limited **A.** Photooxidation of alkene to radical cation

B. Oxidation of malonate to radical species using transition metals

(Scheme 1B).^{6,7} We envisioned that modern visible-light photocatalysis would be applicable to these types of reactions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

60

Scheme 1. Alkylation reactions of malonates with metal alkenes. То date, а variety of and organophotocatalysts have been developed and employed in radical-mediated reactions.⁸ However, these photocatalysts are not stable and their photoactivity is significantly decreased under basic conditions. Therefore, the effects that visible-light photocatalysts have on Brønsted base-catalyzed reactions remain unclear. Here, have developed effective Brønsted we basephotocatalyst hybrid systems for catalytic alkylation reactions of malonates with less electrophilic alkenes and realized high atom economy under very mild reaction conditions without using any transition metal catalysts (Scheme 1C).

The reaction of dimethyl malonate (4a) with 1,1'diphenylethene (5a) was selected as a model reaction in the presence of KO^tBu as a base and photocatalysts 1–3 at room temperature (rt) in MeCN (Table 1). Whereas photocatalysts 1 and 2 gave the product 6 in low yields (entries 1 and 2), photocatalyst 3 provided 6 in 87% yield (entry 3). Further optimization of the reaction conditions enabled a decrease in the amount of the base and 3 to 5 and 1 mol%, respectively (entries 4–6). The target reaction proceeded only in polar solvents such as MeCN and THF (entries 4, 7–9). For further optimization, we examined the use of organic photosensitizers to ensure that 3 delivered the best results (see Table S1 in the Supporting Information (SI)).

Table 1. Optimization of reaction conditions for thereaction of **4a** with **5a**

Entry	Photocatalyst	Solvent	Х	Y	Yield
,	,		amount	amount	(%)
1^a	1	MeCN	30 mol%	3 mol%	0 ^{<i>b</i>}
2 ^{<i>a</i>}	2	MeCN	30 mol%	3 mol%	5 ^{<i>b</i>}
3 <i>ª</i>	3	MeCN	30 mol%	3 mol%	87 ^b
4 ^c	3	MeCN	5 mol%	1 mol%	91 ^d
5 ^c	3	MeCN	5 mol%	0.5 mol%	79 ^d

6 ^c	3	MeCN	2 mol%	1 mol%	77 ^b
7 ^c	3	THF	5 mol%	1 mol%	76 ^d
8 ^c	3	DCM	5 mol%	1 mol%	20 ^{<i>d</i>}
9 ^c	3	Toluene	5 mol%	1 mol%	0 ^{<i>b</i>}

^a Reaction conditions: **4a** (0.3 mmol), **5a** (0.3 mmol), KO^tBu (0.1 mmol), and photocatalyst (0.01 mmol) in anhydrous MeCN (5.0 mL) under argon at rt irradiated with 24W blue LED for 20 h; ^b Determined by ¹H NMR analysis with CH_2Br_2 as internal standard; ^c Reaction conditions: **4a** (0.3 mmol), **5a** (0.33 mmol), KO^tBu, and **3** as described, in anhydrous solvent (5.0 mL) under argon at rt irradiated with 24W blue LED for 20 h; ^d Isolated yield.

We next surveyed the scope of the reaction with respect to alkenes under the optimized reaction conditions. It was found that 1,1-diarylethylene derivatives 5a-e afforded the desired products 6 in excellent yields (Table 2, entries 1-5). Notably, after simple work-up, an almost pure product was identified in the reaction mixture, with only 3 and trace amounts of starting materials being observed (see ¹H NMR spectra of crude samples in the Supporting Information). An exception was 5f, bearing two strong electron-donating groups on Ar and R¹ (entry 6). The R²-substituted alkenes 5q-i also gave lower yields (entries 7-9). While styrene 5j, its alkyl substituted derivatives 5k, 5l, and those with electron-donating groups (5m, 5n) were reactive substrates under the standard reaction conditions (entries 10-12, see also Table S2 in the Supporting Information), the yields were significantly improved by using photocatalyst 7 instead of 3 (Table 2, in parentheses). The effects of **3** and **7** were investigated as part of a subsequent consideration of the mechanism (see below). Styrenes with electron-withdrawing groups 50-t reacted smoothly using 3 (entries 13-20). Whereas only a trace amount of product **6au** was obtained in the reaction of α -methylstyrene **5u** using **3**, 77% yield of **6au** was obtained using 7 (entry 21). The high reactivity was also observed for alkenes 5v-zb bearing heterocyclic rings, except for 5y (entries 22-28). For the latter alkene and for non-terminal alkenes 5zc⁹ and 5zd, better yields of the desired products were obtained using photocatalyst 7 (entry 25 in parenthesis, entries 29, 30). Interestingly, in case of styrenes **5p** and **5j** (only when **7** was used) the side products of double addition of alkene to malonate have been detected (see, Scheme S3 in the Supporting Information).

ACS Catalysis

49 50

51 52 53

54

55

60

Table	2.	Scope	and	limitations	of	the	reaction	with

2								
3	o o		R ²	5 mol% K	O ^t Bu			
4	MeO OMe +		$Ar = R^1 = -$	MeCN, 20h, rt				
5	4a		5	blue LED, Ar		R' COOMe		
6 7	alkenesª							
8	Ent	n/ Ar	D1	D 2	5	6	Viold	
9	1	Dh	Dh		5	622	01	
10	1 2	r tol	FII Dh	п Ц	5a 5h	0aa 6ab	91	
11 12	2	p-toi	Ph	и П	50	620	97	
13	5			п	50	Uac	95	
14	4	p-BrC ₆ H ₄	Ph	Н	5d	6ad	87	
15	5	p-ClC ₆ H ₄	p-CIC ₆ H ₄	Н	5e	6ae	95	
16	6	<i>p</i> -	р-	Н	5f	6af	17 ^c	
17	7	Ph	Ph	Me	5g	6ag	37	
18	8	p-FC ₆ H ₄	p-FC ₆ H ₄	Me	5h	6ah	30	
19	9	Ph	Ph	Ph	5i	6ai	17	
20	10	Ph	Н	Н	5j	6aj	27 (77) ^{d,e}	
21	11	<i>p</i> -tol	н	Н	5k	6ak	21 (71) ^e	
23	12	$p^{-t}BuC_6H_4$	Н	н	51	6al	10 (64) ^e	
24	13	<i>p</i> -MeOC ₆ H ₄	Н	Н	5	6am	0 (28) ^e	
25 26	14	m-MeOC ₆ H ₄	Н	Н	5n	6an	0 ^c (78) ^e	
27	15	p-CIC ₆ H ₄	Н	н	5o	6ao	43 (80) ^e	
28 29	16	$p-O_2NC_6H_4$	Н	н	5р	6ap	55	
30	17	$o-O_2NC_6H_4$	Н	Н	5q	6aq	60	
31	18	p-NCC ₆ H ₄	Н	Н	5r	6ar	56	
32 33	19	p-AcC ₆ H ₄	Н	Н	5s	6as	45	
34 25	20	<i>p</i> -MeO ₂ CC ₆ H ₄	Н	Н	5t	6at	94	
35 36	21	Ph	Me	Н	5u	6a	trace ^c (77) ^e	
37	22	2-pyridyl	Н	Н	5v	6av	80	
38	23	2-pyridyl	Me	Н	5w	6aw	49	
39	24	2-pyridyl	Ph	н	5x	6ax	99	
40	25	3-pyridyl	Н	Н	5у	6ay	11 (46) ^e	
41	26	4-pyridyl	Н	н	5z	6az	85	
- 43	27	2-quinolyl	Н	Н	5z	6aza	51	
44	28	3-quinolyl	н	Н	5z	6azb	41	
45	29	Ph	-(CH ₂) ₄ -		5z	6azc	14 (70) ^e	
46 47 48	30				5z d	6azd	15 (59) ^e	

COOMe COOMe

6azc COOMe 6azd COOMe

(3DPA2FBN) 7

^a Reaction conditions: 4a (0.3 mmol), 5a-azi (0.33 mmol), KO^tBu (0.015 mmol), 3 (0.003 mmol, Method A) in anhydrous MeCN (5.0 mL) under argon at rt irradiated with 24W blue LED for 20 h. ^b Isolated yield unless otherwise noted. ^c Determined by ¹H NMR analysis with CH₂Br₂ as internal standard. ^d 1.1 equiv. of 4a was used. ^e Photocatalyst 7 was used instead of 3.

Next, we investigated the scope of the reaction with malonates 4b-f. Whereas aliphatic esters gave nearly quantitative yields of the expected products 6ba-da, low reactivity was observed for 4e (both substrates remained in the reaction mixture), and substitution at the methylene group also inhibited the process (Table 3). The lack of reactivity of **4f** may be rationalized by formation of stable tertiary radical species (see further mechanistic discussion), thus thermodynamic force for its recombination with alkene is significantly decreased. In addition, other 1,3-dicarbonyl compounds like diketones or ketoesters in the developed conditions undergo competitive DeMayo reactions resulting in complex product mixture formation. Moreover, the visible-light activated DeMayo reaction in comparable conditions for those substrates has been reported by König recently.¹⁰

A plausible mechanism for the reaction is outlined in Scheme 2. The visible-light-excited photocatalyst [Photocat]* oxidizes enolate I, resulting in the formation of radical **II**, which undergoes recombination with alkene 5 to form radical III. Comparison of the oxidation potentials for **5a** $[E(P/P \cdot +) = +1.82 \text{ V vs. SCE in MeCN}]^{11}$ enolates of malonates [ca. 0-0.6 V (for example 4b E(P-/P•) = +0.59 V vs. SCE in MeCN)¹²] and photocatalyst 3 $[E(P^*/P^{\bullet}-) = +1.35 \text{ V and } E(P/P^{\bullet}-) = -1.21 \text{ V vs. SCE in}$ MeCN]¹³ suggested that an electron-transfer event was thermodynamically more feasible for the enolate than for the alkene. Similar observations and conclusions supported by spectroscopic and CV measurement verification were reported by König.¹⁰

Table 3. Scope and limitations of the reaction with

maionales	ma	lonate	esa
-----------	----	--------	-----

	Entry	R^1	R ²	4	6	Yield (%) ^b
	1	Et	Н	4b	6ba	94
	2	ⁱ Pr	Н	4c	6ca	99
	3	^t Bu	Н	4d	6da	92
	4	Allyl	Н	4e	6ea	18 ^c
_	5	Me	Me	4f	6fa	0 ^c

^a Reaction conditions: **4b**–i (0.3 mmol), **5a** (0.33 mmol), KO^tBu (0.015 mmol), **3** (0.003 mmol), in anhydrous MeCN (5.0 mL) under argon at rt irradiated with 24W blue LED for 20 h. ^b Isolated yield unless otherwise noted. ^c Determined by ¹H NMR analysis with CH₂Br₂ as internal standard.

Diarylalkenes result in the formation of highly stable dibenzyl tertiary radicals, which is reflected in the high yields of products. Newly formed radical **III** is reduced to carbanion **IV** to regenerate photocatalyst **3**. Further deprotonation of another molecule of **4a** by productbase **IV** completes the catalytic cycle. When the reaction was conducted in deuterated solvent (CD₃CN) no deuterium incorporation was found in the final product **6** structure, which excludes the possibility of solvent participation in proton or hydrogen atom transfer (see Table S4 in the Supporting Information).¹⁴

On the other hand, judging from the results presented in Table 2, it was noted that some yields were influenced by the reduction potential of the benzyl radicals to the corresponding carbanions.

Scheme 2. Proposed mechanism based on the

conducted investigation

Benzyl radicals bearing electron-withdrawing groups on the aromatic rings have higher reduction potentials [**5**r (56% yield) (P•/P–) = -0.77 V; **5s** (45% yield) (P•/P–) = -0.71 V; **5o** (43% yield) (P•/P–) = -1.40 V vs. SCE in MeCN] than those with electron-donating groups [**5m** (0% yield) (P•/P–) = -1.82 V; **5k** (21% yield) (P•/P–) = -1.62 V; **5j** (27% yield) (P•/P–) = -1.43 V vs. SCE in MeCN] due to the destabilizing/stabilizing effect of substituents.¹⁵ These results suggested that a second electron-transfer process that provided **IV** along with regeneration of photocatalyst **3** might be a rate-limiting step. Photocatalyst **7** improved the low yields of the reactions with styrene bearing electron-donating substituents, since **7** was reported to possess a higher ground-state reduction potential [(P/P•–) = -1.92 V vs. SCE in MeCN].¹⁶

In summary, we have developed a Brønsted basephotocatalyst hybrid system that enabled reactions of malonates with styrene derivatives. The reactions proceeded cleanly with low loadings of base and photocatalyst. Light-initiated single-electron transfer oxidation of in situ generated enolates forming radicals is one of the key steps. This is the first example of C–C bond formation reactions of malonates with alkenes to realize high atom economy under very mild reaction conditions without using any transition metal catalysts.

ASSOCIATED CONTENT

Supporting Information

This supporting information is available free of charge at <u>http://pubs.acs.org</u>.

Materials, photoreactor structure, supporting experiments, experimental methods, compounds characterization data

AUTHOR INFORMATION

Corresponding Authors

Shū Kobayashi - Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan, ORCID 0000-0002-8235-4368, e-mail: shu_kobayashi@chem.s.u-tokyo.ac.jp Yasuhiro Yamashita - Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan , e-mail: yyamashita@chem.s.u-tokyo.ac.jp

Authors

*Sebastian Baś - Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan, ORCID 0000-0003-4692-5757

Present Addresses

+Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was partially supported by Japan Agency for Medical Research and Development (AMED) (S.K.), and Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP 17H06448 (Y.Y.).

ABBREVIATIONS

1

1

2

3

4

5

58 59

60

SET, single electron transfer, CV, cyclic voltammetry, SCE, saturated calomel electrode, TLC, thin layer chromatography, NMR nuclear magnetic resonance, LED, light-emitting diode

REFERENCES

(1) (a) Classic in Total Synthesis Eds.: Nicolaou, K. C.; Sorensen, E.
J.; Wiley-VCH, Weinheim, **1996**, pp 1-19; (b) Classic in Total
Synthesis II Eds. Nicolaou, K. C.; Snyder, S. A.; Wiley-VCH,
Weinheim, **2003**, pp 1-12; (c) Nicolaou, K. C.; Vourloumis, D.;
Winssinger, N.; Baran, P. S. The Art and Science of Total
Synthesis at the Dawn of the Twenty-First Century. Angew.
Chem. Int. Ed. **2000**, 39, 41–122.

(2) Advanced Organic Chemistry Reactions, Mechanisms and
Structure (6rd Ed.) Smith, M. B.; March, J. John Wiley & Sons,
Hoboken, New Jersey, **2007**, pp. 234-296 and 999-1251.

(3) (a) Dénès, F.; Pérez-Luna, A.; Chemla, F. Addition of Metal
Enolate Derivatives to Unactivated Carbon-Carbon Multiple
Bonds. *Chem. Rev.* 2010, *110*, 2366–2447; (b) Dong, Z.; Ren, Z.;
Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C–
H Alkylation Using Alkenes. *Chem. Rev.* 2017, *117*, 9333–9403.

(4) (a) Ohashi, M.; Nakatani, K.; Maeda, H.; Mizuno, K. 21 Photochemical Monoalkylation of Propanedinitrile by Electron-22 Rich Alkenes. Org. Lett. 2008, 10, 2741-2743; (b) Ohashi, M.; 23 Nakatani, K.; Maeda, H.; Mizuno, K. Intramolecular Polar 24 Addition Reactions of Active Methylene Moieties to Aryl-25 Substituted Alkenes via Photoinduced Electron Transfer. 26 Tetrahedron Lett. 2010, 51, 5537-5539; (c) Ohashi, M.; Nakatani, 27 K.; Maeda, H.; Mizuno, K. Selective Photochemical 28 Monoalkylation of Active Methylene Compounds by Alkenes. A 29 Green Pathway for Carbon-Carbon Bond Formation. J. 30 Photochem. Photobiol. A 2010, 214, 161-170.

(5) Arnold, D. R.; Chan, M. S. W.; McManus, K. A. Photochemical
Nucleophile-Olefin Combination, Aromatic Substitution (PhotoNOCAS) Reaction, Part 12. Factors Controlling the
Regiochemistry of the Reaction with Alcohol as the Nucleophile. *Can. J. Chem.* **1996**, *74*, 2143–2166.

(6) For enolate activation, see: (a) Ko, T. Y.; Youn, S. W. 36 System Cooperative Indium(III)/Silver(I) Oxidative 37 for Coupling/Annulation of 1,3-Dicarbonyls and Styrenes: 38 Construction of Five-Membered Heterocycles. Adv. Synth. Catal. 39 2016, 358, 1934-1941; (b) Wetter, C.; Jantos, K.; Woithe, K.; 40 Intermolecular Α. Radical Addition Studer, and 41 Addition/Cyclization Reactions of Alkoxyamines onto 42 Nonactivated Alkenes. Org. Lett. 2003, 5, 2899-2902; (c) Maeda, 43 H.; Takayama, H.; Segi M. Photoinduced Three-Component 44 Coupling Reactions of Electron Deficient Alkenes, Dienes and 45 Active Methylene Compounds. Photochem. Photobiol. Sci. 2018, 46 17, 1118-1126; (d) Lu, Z.-F.; Shen, Y.-M.; Yue, J.-J.; Hu, H.-W.; Xu, 47 Photoinduced Three-Component J.-H. Reactions of 48 Tetracyanobenzene with Alkenes in the Presence of 1,3-49 Dicarbonyl Compounds as Nucleophiles. J. Org. Chem. 2008, 73, 50 8010-8015.

(7) (a) Linker, T.; Kersten, B.; Linker, U.; Peters, K.; Peters, E.-M.;
von Schnering, H. G. Manganese(III)-Mediated Radical Additions
of Dimethyl Malonate to Olefins. The Chemoselective Synthesis
of Diesters and Lactones. *Synlett* **1996**, 468–470; (b) Hirase, K.;
Iwahama, T.; Sakaguchi, S.; Ishii, Y. Catalytic Radical Addition of
Carbonyl Compounds to Alkenes by Mn(II)/Co(II)/O₂- System. J.
Org. Chem. **2002**, 67, 970–973; (c) Kagayama, T.; Fuke, T.;

Sakaguchi, S.; Ishii, Y. A Remarkable Effect of Bases on the Catalytic Radical Addition of Cyanoacetates to Alkenes Using a $Mn(II)/Co(II)/O_2$ Redox System. *Bull. Chem. Soc. Jpn.* **2005**, *78*, 1673–1676.

(8) For recent reviews on organic photocatalysis, see: (a) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034-10072; (b) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075-10166; (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074; (d) Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K. P.; Qin, H.-L. Visible Light-Induced C-H Bond Functionalization: A Critical Review. Adv. Synth. Catal. 2018, 360, 4652-4698; For carbon-carbon bond-forming photoreactions, see: (a) Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850–9913; (b) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the Formation of the C-C Bond. Chem. Rev. 2007, 107, 2725-2756.

(9) Product undergoes rearrangement with the carboxylic group migrating. For more details see Scheme S2 in the Supporting Information.

(10) Martinez-Haya, R. ; Marzo, L.; König, B. Reinventing the De Mayo Reaction: Synthesis of 1,5-Diketones or 1,5-Ketoesters via Visible Light [2+2] Cycloaddition of β -Diketones or β -Ketoesters with Styrenes. *Chem. Commun.* **2018**, *54*, 11602–11605 (see Supporting Information).

(11) Arnold, D. R.; Du, X.; Henseleit, K. M. The Effect of Metaand Para-Methoxy Substitution on the Reactivity of the Radical Cations of Arylalkenes and Alkanes. Radical Ions in Photochemistry. Part 26. *Can. J. Chem.* **1991**, *69*, 839–852.

(12) (a) Niyazymbetov, M. E.; Rongfeng, Z.; Evans, D. H. Oxidation Potential as a Measure of the Reactivity of Anionic Nucleophiles. Behaviour of Different Classes of Nucleophiles. *J. Chem. Soc., Perkin Trans. 2* **1996**, 1957–1961; (b) Daasbjerg, K.; Knudsen, S. R.; Sonnichsen, K. N.; Andrade, A. R.; Pedersen, S. U. Systematic Ranking of Nucleophiles as Electron Donors. *Acta Chem. Scand.* **1999**, *53*, 938–948.

(13) Luo, J.; Zhang, J. Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp³)–C(sp²) Cross-Coupling. *ACS Catal.* **2016**, *6*, 873– 877.

(14) For examples of MeCN participation in the reaction mechanism, see: (a) Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.; Yoshimi, Y. A Strategy for Generating Aryl Radicals from Arylborates through Organic Photoredox Catalysis: Photo-Meerwein Type Arylation of Electron-Deficient Alkenes. *Chem. Commun.* **2018**, *54*, 1257–1260; (b) Kumagai, Y.; Naoe, T.; Nishikawa, K.; Osaka, K.; Morita, T.; Yoshimi, Y. Formation of Carbanions from Carboxylate Ions Bearing Electron-Withdrawing Groups via Photoinduced Decarboxylation: Addition of Generated Carbanions to Benzaldehyde. *Aust. J. Chem.* **2015**, *68*, 1668–1671.

(15) Sim, B. A.; Milne, P. H.; Griller, D.; Wayner, D. D. M. Thermodynamic Significance of ρ^+ and ρ^- from Substituent Effects on the Redox Potentials of Arylmethyl Radicals. *J. Am. Chem. Soc.* **1990**, *112*, 6635–6638.

(16) Speckmeier, E.; Fischer, T. G.; Zeitler, K. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor–Acceptor Cyanoarenes. J. Am. Chem. Soc. **2018**, 140, 15353–15365.

ACS Catalysis

