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A b s t r a c t :  Two novel analogues of  lysine have been prepared in high enantiomeric and 

diastereomeric purity. These unnatural a-amino acids possess modified aminoalkyl side 

chains incorporating a pyrrolidine nucleus as a cyclic constraint. © 1998 Elsevier Science Ltd. 
All rights reserved. 
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As part of an ongoing medicinal chemistry programme we recently reported [1 ] the homochiral 

synthesis of functionalised pipecolic acids 1, as constrained analogues of lysine. We are using 

these novel amino acids to provide valuable information on the bioactive conformation of 

pharmacologically active peptides and 13-turn mimetics. N-Substituted a-amino acids such as 

proline and pipecolic acid share the ability to exert a significant influence on the local, secondary 

structure of polypeptides containing them [2]. For this reason we considered that the pyrrolidines 

2, in which the additional constraint is confined entirely to the side chain, would represent a new 

and complementary class of lysine analogues. 
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A notable feature of the proposed synthetic strategy (Scheme 1) is the concept of using the 

homologous, lactams 3 and 4 to prepare examples of both genetic structures 5 and 7. We have 

already demonstrated that chemoselective reduction of the amidic carbonyl group in the N-Boc 

piperidone 4, followed by catalytic hydrogenation, provides an efficient route, via path A, to the 

pipecolic acids 1. However, studies conducted by Young et al. [3] suggested that prior reduction 

of the nitrile function in the corresponding N-Boc pyrrolidone 3, would invoke a spontaneous 

'ring switching' reaction, via path B, to furnish the rearranged lactam 6 (n = l ). The realisation 

of this latter process is reported herein. 
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Scheme 1 

The lactam ester 8 (Scheme 2), conveniently prepared from (S)-pyroghitamic acid by reported 

procedures [4], was alkylated as previously described by Ezquerra et al. [5], to give a 2:1 

mixture of diastereomeric nitriles 3a and 3b in a combined yield of 65%. Following separation 

by a combination of chromatography and crystallisation each diastereomer was independently 

subjected to catalytic reduction. Initially this proved disappointing, since hydrogenation under 

neutral or basic conditions gave complex reaction mixtures from which, in the case of 3a, it was 

possible to isolate the corresponding pyrrolidone 6a, but only in low yield. In contrast, reduction 

of the nitriles 3 under acidic conditions gave cleanly, in both cases, a more polar product (by 

TLC) presumably corresponding to the amine hydrochlorides, which are stable under these 

conditions. On buffeting the reaction mixtures to pH 8 with sodium bicarbonate, these initially 

formed intermediates were replaced with a less polar product (by TLC) and the desired epimeric 

lactams 6a and 6h were obtained in high yield. The structure of 6a, derived from the trans 
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substituted pyroglutamate 3a, and its stereochemical assignment as 2S, 4R, was confirmed at this 

stage by a single crystal, X-ray diffraction analysis. 
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Scheme 2 

Reagents and Conditions: a) LiHMDS, ICH2CN, THF, 65%; b) i. H2, PRO2, EtOH, 1% HC1, ii. NaHCO3, H20. 85%; c) Lawesson's 
reagent, PhMe, reflux, 75-85%; d) i. CH2~CHCH2Br, CH2C12, Et3N, ii. Na(CN)BH3, MeOH, AcOH; e) 2-C1-ZONSu, ElaN, 
CH2C12, 55-65 %; f) i. TFA, CH2C12, ii. FmocONSu. NaHCO3, 1-120, dioxane, 70-75%; g) l-IBr. AcOH, ii. Boo.O, NaHCO3, H20, 
dioxane, 80-85%. 

Attempts to reduce the secondary amide m 6a directly, with a variety of borane reagents gave 

a mixture of products and therefore a more chemoselective method was sought. In a modification 

of the Sundberg procedure [6], the thioamides 9 were treated with allyl bromide and the resulting 

thioiminoethers reduced, m situ, with sodium cyanoborohydride. In order to provide a protective 

group pattern in line with the requirements of solid phase peptide synthesis, each of the 

secondary amines 10 were converted into the 2-chlorobenzyl carbamates 11; the N-Boe groups 

removed selectively with TFA, and the amines reprotected as the Fmoc derivatives, delivering 

the orthogonally protected diamine esters 12. For each isomer, the ten-butyl ester and the benzyl 
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carbamate groups were removed with HBr m acetic acid and the pyrrolidine nitrogen then 

reprotected as the N-Boc derivative to furnish the desired amino acids 2a and 2b in high yield. 

The incorporation of these novel lysine mimics into biologically active peptides will be reported 

in due course. 

Selected Physical and Spectroscopic Data for Pyrrolidones 6a and 6b: 

O a Bo~HN ~'"alco2tBu 
6a 

m.p. 126-128°C (EtOAc); Rf [Ethyl acetate] 0.47 (KMnO4); 8H (400 
MHz; CDC13) 1.42 (9H, s, CO2tBu), 1.45 (9H, s, CO2tBu), 1.75 (1H, 
m, 1H-a), 1.90 (1H, m, 1H-c), 2.25 (1H, m, 1H-a), 2.34 (1H, m, 1H- 

c), 2.48 (1H, m, H-b), 3.3l (2H, dd, 3 9, 6, CH2NH), 4.23 (1H, dd, 3 
15, 7, CHCO2tBu), 5.65 (1H, d, 3 8, NH), 6.02 (1H, br s, NI-IBoc); 

8c (100  M H z ,  CDCI3)  28 .0  (q  + t), 28 .4  (q),  33.6 (t), 38.6 (d), 40.4 
(t), 53.0 (d), 79.6 (s), 82.0 (s), 155.5 (s), 171.5 (s), 179.6 (s), 

N c 

6b 

m.p. 148-150°C; Rf [Ethyl acetate] 0.47 (KMnO4); 8H (400 MHz; 
CDC13) 1.42 (9H, s, CO2tBu), 1.44 (9H, s, CO2tBu), 1.78 (1H, m, 

1H-a), 1.84 (1H, m, 1H-c), 2.09 (1H, m, 1H-a), 2.39-2.51 (2H, m, 
1H-c, H-b), 3.33 (2H, m, CH2NH), 4.17 (1H, m CHco2tBu), 5.27 

(1H, d, J 8, NH), 5.80 (1H, br s, NHBoc); 8c (100 MHz; CDC13) 
27.9 (q), 28.2 (t), 28.3 (q), 34.6 (t), 37.9 (d), 40.2 (t), 52.7 (d), 79.7 
(s), 82.0 (s), 155.7 (s), 171.5 (s), 179.6 (s). 
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