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ABSTRACT: We report an iodoarene-catalyzed enantioselective 
synthesis of β,β-difluoroalkyl halide building blocks. The 
transformation involves an oxidative rearrangement of α-
bromostyrenes, utilizing HF–pyridine as the fluoride source and m-
CPBA as the stoichiometric oxidant. A catalyst decomposition 
pathway was identified, which, in tandem with catalyst structure–
activity relationship studies, facilitated the development of an 
improved catalyst providing higher enantioselectivity with lower 
catalyst loadings. The versatility of the difluoroalkyl bromide 
products was demonstrated via highly enantiospecific substitution 
reactions with suitably reactive nucleophiles. The origins of 
enantioselectivity were investigated using computed interaction 
energies of simplified catalyst and substrate structures, providing 
evidence for both CH– and – transition state interactions as 
critical features.  

The disparity between the prevalence of fluorine in 
anthropogenic and naturally occurring compounds is striking.1 Few 
natural products contain carbon–fluorine linkages, whereas 
medicinal, agricultural, and materials chemistry are replete with 
examples where fluorination is critical for optimal functional 
properties.2 This difference manifests synthetically as an absence 
of naturally occurring chiral-pool sources of enantioenriched alkyl 
fluorides, necessitating the continuing development of chemical 
strategies for their selective synthesis.3 In this regard, fluorinated 
building blocks amenable to diversification are of particular 
interest. 

We envisioned that compounds with the general structure 1 
could be of high synthetic value given the unique properties of 
geminally difluorinated compounds (Figure 1A). The 
difluoromethylene motif has the highest dipole moment of the 
fluoromethane series and exerts a bond-angle-widening effect 
commensurate with sp2 centers, implicating geminal difluorides as 
both ketone and ether bioisosteres.4 These properties, together with 
the well-documented effects of fluorination on metabolic stability, 
lipophilicity, and potency of drug compounds, indicate that 
compounds such as 1 could be useful building blocks for the 
preparation of enantioenriched molecules containing geminal 
difluorides. Though deoxyfluorination and related transformations 
of carbonyl derivatives provide established approaches to gem-
difluorination, they are generally not applicable to the synthesis of 
compounds bearing α-stereocenters because of epimerization and 
other nonproductive decomposition pathways.5  

To access 1 and related building blocks, we turned to the 
chemistry of chiral iodoarenes, which have been applied recently 
by our group and others in catalytic, enantioselective 
fluorofunctionalizations of diverse olefinic substrates.6-8 We 
envisioned such catalysts could enable the enantioselective 
synthesis of β,β-difluorinated alkyl bromides from vinyl bromides 
of type 2 through a pathway involving initial, enantiodetermining 
fluoroiodination of the alkene. Subsequent intramolecular, 
stereospecific displacement of intermediate alkyliodane A to 
generate bromonium ion B and regioselective ring opening by 
fluoride would then afford the desired product (Figure 1B). We 
were encouraged by a 
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Figure 1. A) Examples of difluroromethylene-containing 
medicinal compounds and properties of difluoromethylenes as 
bioisosteres. B) Catalytic cycle for oxidative bromonium formation 
leading to enantioenriched alkyl bromides. 

report of a related oxidative hydrolysis of vinyl halides, affording 
racemic α-haloketones using stoichiometric Koser’s reagent.8h

Vinyl bromide 2a was evaluated as a model substrate for the 
proposed fluorinative bromonium rearrangement (Figure 2A). The 
α-benzyl-substituted Ishihara-type8c catalyst 3a that was identified 
previously as optimal in other alkene fluorofunctionalization 
reactions7a afforded desired product 1a in high conversion and 
promising levels of enantioselectivity. Systematic evaluation of 
catalysts bearing varied substitution on the α-benzyl groups (R1) 
led to the identification of para-tert-butyl-substituted derivative 3b 
as optimal. We hypothesized initially that the beneficial effect of 
tert-butyl substituents might have a steric origin, and this notion 
was seemingly supported by a good correlation between Charton 
parameters for the alkyl substituents and enantioselectivity (Figure 
2B, black diamonds, R2

alkyl = 0.91).9,10 However, the correlation 
fails if electron-withdrawing para-substituents are included (R2

all = 
0.22). We will return to an analysis of the intriguing catalyst 
substituent effects below.
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Figure 2. A) Reaction optimization and isolation of catalyst 
decomposition product 4. Conditions: 0.05 mmol scale, 11 equiv. 
py•9HF, 1.42 equiv. m-CPBA, 0.08M. a16 h. b48 h. Isolated yield 
in parentheses. B) Charton plot of catalyst substituents (R1) vs. 
experimental enantioselectivity (G‡ = −RTln(e.r.)).

Lowering the catalyst loading of 3b from 20 mol% to 10 mol% 
led to a substantial decrease in reaction conversion with a 
concomitant decrease in enantioselectivity, the latter being 
unexpected given the lack of an observable background reaction in 
the absence of an iodoarene catalyst. The decrease in conversion 
was not offset by extending reaction times, indicating that catalyst 
deactivation was occurring. Indeed, efforts to recover the catalyst 
led to the identification of catalyst decomposition product 4, in 
which one benzyloxy substituent was replaced with a 

monofluorinated derivative of the vinyl bromide substrate. 
Reactions carried out with 4 as the catalyst produced the same 
difluorinated product 1a as parent catalyst 3b, but with 
substantially lower levels of conversion and diminished 
enantioselectivity.

We reasoned that the formation of 4 results from attack of a 
carbonyl group of catalyst 3b on the bromonium ion intermediate 
(Figure 2A).11 Catalysts bearing electron-withdrawing substituents 
on the benzyl ester (R2) were therefore prepared and evaluated with 
the goal of attenuating the nucleophilicity of the ester carbonyl and 
thereby limiting the decomposition pathway. Indeed, after 
examining several candidates, the p-SF5 derivative (3c) was 
identified as optimal for both conversion and enantioselectivity. 
Use of 3c at 10 mol% loading in the model transformation resulted 
in generation of 1a in 84% isolated yield and 92% ee with no 
decomposition products analogous to 4 observed (Figure S7).

Having identified 3c as an effective catalyst for the 
enantioselective difluorinative rearrangement with model substrate 
2a, we evaluated the scope of this transformation with respect to 
the substitution pattern on the aromatic and aliphatic portions of the 
substrate (Figure 3). Styrenyl bromides bearing electron-
withdrawing meta- and para-substituents were effective substrates 
(products 1a–1q), affording products in 52–84% yield and 70–93% 
ee. Substrates bearing free alcohol (1s) or primary aliphatic 
bromide (1t) substituents also reacted smoothly, affording the 
desired products with 90% ee and 76% ee, respectively. However, 
substrates possessing more electron-rich aromatic substituents or 
ortho-substituted arenes were either too unstable to isolate in 
sufficient quantities or decomposed under the reaction conditions, 
precluding their evaluation in this reaction.
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To assess the synthetic utility of the fluorinated alkyl bromide 
products, a series of derivatization reactions were explored (eqs 1–
3). Both intermolecular (eq 1) and intramolecular substitution (eqs 
2 and 3, respectively) occurred smoothly with nitrogen, oxygen, 
and sulfur nucleophiles to afford the corresponding products with 
complete enantiospecificity. Such ready access to azide 5 and its 
derivatives provides an appealing entry to gem-difluorinated 
bioisosteric analogues of the 

Page 2 of 8

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



R
FF

Br
R

Br 10 mol% 3c
m-CPBA, py9HF

DCM
40 oC

R'

R'

2 1

Me

FF

Br
NO2

1a, 84%, 92% ee

Me
FF

Br

1p, 81%, 82% ee

Br

Me
FF

Br

1r, 82%, 63% ee

R

FF

Br

1i, R = Et, 83%, 92% ee
1j, R = nBu, 84%, 93% ee

O2N

FF

Br

1c,R = Et, 78%, 89% ee
1d, R = nBu, 84%, 82% ee

nBu

FF

Br
CN

1f, 65%, 81% ee

Me

FF

Br

1b, 81%, 79% ee

nBu
FF

Br

1l, 84%, 79% ee

EtO2C

OTf

1m, 55%, 83% ee

Me
FF

BrF3C

Me
FF

Br

CF3

R
FF

Br

Br

1g, R = Et, 52%, 90% ee
1h, R = iPr, 73%, 70% ee

R
FF

BrNC

1n, R = Et, 73%, 89% ee
1o, R = nBu, 76%, 88% ee

Me
FF

BrTfO

1k, 80%, 80% ee

R

FF

Br

CO2Et

FF

Br

Br

Br

1t, 98%, 76% ee

OH

O2N

1s, 75%, 90% ee

N
MeN

1e, 60%, 80% ee

Me
FF

Br

Cl

1q, 71%, 79% ee

CO2Me

I
O O

O

O

tBu

O

O

tBu

F5S SF5

3c

Figure 3.  Scope studies. Enantiomeric excess determined by chiral HPLC or GC. Conditions: 0.2 mmol scale, 11 equiv. py•9HF, 1.2 equiv. 
m-CPBA, 0.08 M, 48 h, isolated yields.  Absolute configuration of 1i established through X-ray crystal structure determination of a derivative 
(S4), remaining products assigned by analogy.

ketone-containing cathinone subclass of phenethylamines.12 
Invertive nucleophilic substitution of the bromide in 1 required 
more forcing conditions than substitutions with typical secondary 
aliphatic alkyl bromides.13 However, the deactivating effect of 
gem-difluorination in SN2 pathways does not preclude 
stereospecific substitution by strong nucleophiles, presumably 
because of an even greater deactivation toward SN1-like 
pathways.14,15

As noted above, catalyst enantioselectivity is subject to strong 
substituent effects that do not correlate with steric parameters. 
Given that the substituted arenes of the catalyst are insulated 
electronically and remote from the reactive iodine center, we 
hypothesized that attractive secondary noncovalent interactions 
(NCIs) influenced by the electronic properties of the substituents 
may play a critical role. This idea was also supported by earlier 
computational studies conducted in collaboration with Houk and 
Xue of related styrene difluorination reactions, wherein several key 
attractive NCIs were invoked to underlie enantioinduction.16 

We anticipated any attractive NCIs might be analyzed 
effectively using linear free energy relationships (LFERs) between 
experimental enantioselectivities and catalyst parameters. Such an 
approach is not predicated on knowledge of the enantiodetermining 
step because G‡ (calculated from e.r.) provides an intrinsic 
readout of the energy difference in the competing major and minor 
transition states in that step. While the LFER approach does not 
provide a three-dimensional transition state structure as might be 
attainable with density functional theory (DFT) calculations, it 
leverages the full body of experimental data to evaluate the factors 
governing stereocontrol. 

A modest linear correlation (R2 = 0.76) was obtained between 
the experimental enantioselectivities and the classical Hammett 
σp/m values of the catalyst arene substituents examined in the 
original optimization process (defined as the training set). The σm 
parameter has previously been correlated to the strength of NCIs 
with arenes,17 but the relationship is indirect given that σ values are 
derived from experimental pKa values of substituted benzoic acids. 

Examining a wide range of DFT-calculated molecular properties 
(including natural bond orbital charges, IR frequencies/intensities, 
and NMR chemical shifts) did not produce good correlations with 
experimental enantioselectivity unless incorporated into complex 
multivariate statistical models. Recognizing that such multivariate 
correlations can result from overfitting the limited data set,18 we 
sought to identify other computational descriptors that could 
capture the relevant NCIs more directly.19

This endeavor was facilitated by the use of symmetry-adapted 
perturbation theory (SAPT),20 wherein interaction energies were 
evaluated between R1-substituted benzenes serving as truncated 
versions of the catalysts and probe molecules serving as 
representative partners for different NCIs (Figure 4A). These 
calculated interaction energies provided significantly improved 
correlations to the experimental enantioselectivity data.18 A 
particularly strong univariate correlation (with R2 = 0.93, training 
set) was obtained using the CH– interaction energy between the 
truncated catalyst arene and an orthogonally disposed benzene 
probe (Figure 4B). This correlation enabled the successful 
prediction and experimental validation of two new catalysts, 
defining both more (1-adamantyl-substituted) and less (3,4,5-
trifluoro-substituted) enantioselective catalysts than those in the 
training set. Significant correlations were also obtained using 
certain cation– interaction energies (R2 ≤ 0.84, training set), but 
such correlations displayed systematic curvatures indicating that 
the beneficial effect on enantioselectivity of electron-donating 
substituents was being captured less accurately. Moreover, the 
cation– correlations also failed to predict the performance of 1-
adamantyl- and 3,4,5-trifluoro-substituted catalysts as accurately as 
the CH– correlation. Thus, the SAPT analysis validated the 
conclusion that the substituent effect on catalyst enantioselectivity 
is not steric in nature, and reveals instead that it is best ascribed to 
a selective, attractive CH– interaction in the enantiodetermining 
transition state(s).21
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interaction energies (IEs). B) Correlation of experimental 
enantioselectivity (G‡ = –RTln(e.r.)) with computed interaction 
energies between substituted catalyst arenes and a benzene probe. 
The line of best fit for the training set was used to extrapolate 
catalyst performance.

To further interrogate the role of attractive NCIs as important 
features of this enantioselective process, both DFT properties and 
SAPT-derived interaction energies were computed for the vinyl 
bromide substrates 2a–2t and compared to experimental 
enantioselectivities.15 From a training set of thirteen substrates 
(defined chronologically by the first substrates evaluated), a 
univariate correlation was obtained using the LUMO energies of 
the substrates (R2 = 0.90, Figure 5A). External validation of this set 
with seven additional entries revealed a poorer overall correlation 
with the LUMO energy (R2 = 0.68) as a result of three outliers. 
Nevertheless, this simple model could be used to predict the 
performance of pyrazole-containing substrate 2r, despite structural 
dissimilarities compared to the training set. Multivariable linear 
regression analysis was also conducted on the entire data set in 
attempts to reconcile outliers in the LUMO correlation; however, 
expansion to two-parameter models did not afford any significant 
improvement to the observed correlation with 
enantioselectivity.22,23

To interpret the correlation of calculated substrate LUMO 
energies to enantioselectivity, we assessed the LUMO energies 
against a wide set of other DFT-derived parameters and SAPT 
interaction energies. The best correlation was with calculated 
energies of a directly stacked – interaction between the substrate 
arene and a benzene probe (R2 = 0.96, Figure 5B).17b We therefore 
hypothesize that the LUMO correlation reflects the degree to which 
the substrates can engage in selective -interactions in the 
enantiodetermining transition states Taken together with the 
catalyst correlation and the previous computational study,16 these 
observations are consistent with a network of attractive NCIs being 
responsible for enantioinduction.  
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Figure 5. A) Univariate correlation of experimental 
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energy of each vinyl bromide substrate. The line of best fit for the 
training set (red) was extended to the full range of values in the data 
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in – interactions. C) Representation of how catalyst 3c and 
substrate 2a may interact in the enantiodetermining transition state 
based on SAPT studies (R = CO2CH2C6H4(p-SF5), one catalyst 
sidearm omitted for clarity).

In conclusion, we have developed a synthetic method that 
leverages the chemistry of chiral iodoarene difluoride intermediates 
to generate enantioenriched, gem-difluorinated, secondary 
aliphatic bromides with high enantioselectivity. Systematic 
optimization of the catalyst structure and identification of a catalyst 
decomposition pathway led to a protocol that was both more 
enantioselective and more efficient. A single SAPT-derived 
interaction energy was sufficient to correlate enantioselectivities to 
catalyst substituent effects. Efforts to capture substrate effects on 
enantioselectivity with calculated parameters proved more 
challenging, although a correlation with substrate electrophilicity 
was established and interpreted as the ability for the substrate to 
participate in selective -interactions. Together, these studies add 
to a growing body of evidence for the important structural features 
underpinning the activity, stability, and enantioselectivity of this 
increasingly important class of iodoarene catalysts.24
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