Tetrahedron: Asymmetry 22 (2011) 1591-1593

Contents lists available at SciVerse ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Concise, efficient and highly selective asymmetric synthesis of (+)-(3*S*,4*R*)-cisapride

Stephen G. Davies*, Rosemary Huckvale, Thomas J. A. Lorkin, Paul M. Roberts, James E. Thomson

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK

ARTICLE INFO

Article history: Received 18 August 2011 Accepted 25 August 2011 Available online 6 October 2011

ABSTRACT

A concise asymmetric synthesis of the gastroprokinetic agent (+)-(3*S*,4*R*)-cisapride {(+)-(3*S*,4*R*)-*N*(1)-[3'-(4"-fluorophenoxy)propyl]-3-methoxy-4-(2"'-methoxy-4"'-amino-5"'-chlorobenzamido)piperidine} from commercially available starting materials has been developed. The key step of this synthesis employs the diastereoselective conjugate addition of lithium (*R*)-*N*-benzyl-*N*-(α -methylbenzyl)amide to *tert*-butyl 5-[*N*-3'-(4"-fluorophenoxy)propyl-*N*-allylamino]pent-2-enoate and in situ enolate oxidation with (–)-camphorsulfonyloxaziridine to set the (3*S*,4*R*)-configuration found within the piperidine ring of the product. This synthesis proceeds in 9 steps from commercially available 1-(4'-fluorophenoxy)-3-bromopropane with an overall yield of 19%.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

 (\pm) -(RS,SR)-Cisapride { (\pm) -(RS,SR)-N(1)-[3'-(4''-fluorophenoxy)propyl]-3-methoxy-4-(2"'-methoxy-4"'-amino-5"'-chlorobenzamido)piperidine} is a gastroprokinetic agent¹ that was developed by Janssen Pharmaceutica in the 1980s² (Fig. 1). The racemate was marketed (from 1993 onwards) under the trade name Propulsid[®] as a treatment for gastroesophageal reflux disease,³ although it has also been used successfully in the treatment of other gastrointestinal diseases such as chronic bowel constipation and irritable bowel syndrome.⁴ However, the adverse gastrointestinal (e.g., abdominal pain and diarrhoea) and cardiovascular effects associated with the drug can be severe.⁵ Between 1993 and 1999 there were 341 cases of cardiac dysrhythmia attributed to the use of Propulsid[®], as well as 80 reported deaths, which ultimately led to the voluntary withdrawal of the drug from market in the USA in 2000, pending further research.⁶ It has been reported that administration of the (+)-(3S,4R)-eutomer substantially reduces the adverse effects associated with the racemate,⁷ and the biological screening of compounds related to cisapride is still an active area of research.⁸ As such, there is continued interest in the development of methods to enable the efficient syntheses of analogues of cisapride. Herein we report a concise and efficient asymmetric synthesis of (+)-(3S,4R)-cisapride⁹ in 19% yield over 9 steps from commercially available starting materials that should be readily amenable to diversification. The key step of this synthesis employs the diastereoselective conjugate addition of lithium (R)-N-benzyl-N-(α -methylbenzyl)amide to tert-butyl 5-[N-3'-(4"-fluorophenoxy)propyl-N-

* Corresponding author. *E-mail address*: steve.davies@chem.ox.ac.uk (S.G. Davies). allylamino]pent-2-enoate and in situ enolate oxidation with (-)-camphorsulfonyloxaziridine [(-)-CSO] to set the (3S,4R)-configuration found within the piperidine ring of the final product.

Figure 1. Structure of (+)-(3S,4R)-cisapride.

Scheme 1. Reagents and conditions: (i) allylamine, K_2CO_3 , NaI, THF, rt, 16 h; (ii) acrolein, DBU, THF, -15 °C, 40 min; (iii) Ph₃P=CHCO₂^tBu, THF, -15 °C to rt, 16 h.

^{0957-4166/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2011.08.020

2. Results and discussion

Treatment of 1-(4'-fluorophenoxy)-3-bromopropane **1** with allylamine gave secondary amine **2** in 87% yield.¹⁰ Subsequent conversion of **2** into α , β -unsaturated ester **4** was achieved by following the procedure of Chesney and Marko,¹¹ which involved conjugate addition of **2** to acrolein at -15 °C to give β -amino aldehyde **3** that was trapped by in situ Wittig reaction with *tert*-butyl (triphenyl-phosphoranylidene)acetate to give a 77:23 mixture of (*E*):(*Z*) olefin isomers. Purification gave the diastereoisomerically pure (*E*)-isomer **4** ($J_{2,3}$ = 16.2 Hz) in 70% yield (Scheme 1).

Diastereoselective conjugate addition of lithium (*R*)-*N*-benzyl-*N*-(α -methylbenzyl)amide **5** (99% ee)¹² to α , β -unsaturated ester **4**¹³ was followed by in situ enolate oxidation upon treatment with (–)-CSO **6**¹⁴ to give α-hydroxy-β-amino ester **7** as a single diastereoisomer which was isolated in 64% yield after chromatography. The absolute (*R*,*R*,*R*)-configuration within **7** was assigned by analogy to the well established stereochemical outcome of our aminohydroxylation process.^{14,15} The deallylation and cyclisation of **7** to give the corresponding piperidin-2-one **9** was achieved by sequential treatment with Pd(PPh₃)₄ in the presence of *N*,*N*-dimethylbarbituric acid as an allyl cation scavenger,¹⁶ followed by heating a solution of the crude reaction mixture (containing **8**) in PhMe at reflux in the presence of PhCO₂H. Chromatographic purification gave the desired piperidin-2-one **9** in 99% yield over 2 steps. O-Methylation of **9** was achieved upon treatment with

Scheme 2. Reagents and conditions: (i) lithium (*R*)-*N*-benzyl-*N*-(α -methylbenzyl)amide **5**, THF, $-78 \degree$ C, 2 h, then (-)-CSO **6**, $-78 \degree$ C to rt, 12 h; (ii) Pd(PPh₃)₄, *N*, *N*-dimethylbarbituric acid, CH₂Cl₂, 35 °C, 3 h; (iii) PhCO₂H, PhMe, 80 °C, 16 h; (iv) NaH, THF, 0 °C, 1 h, then Mel, 0 °C to rt, 16 h; (v) LiAlH₄, THF, 60 °C, 16 h; (vi) H₂, Pd(OH)₂/C, MeOH, rt, 16 h; (vii) **13**, ClCO₂Et, Et₃N, THF, rt, 16 h.

NaH then MeI, which gave **10** in 77% isolated yield, with subsequent reduction of piperidin-2-one **10** with LiAlH₄ in THF at reflux giving piperidine **11** in 99% isolated yield. Hydrogenolytic *N*-debenzylation of **11** gave primary amine **12**. Subsequent *N*-acylation of **12** with 2-methoxy-4-amino-5-chlorobenzoic acid **13** was achieved via the mixed anhydride method,² upon treatment of **13** with ethyl chloroformate and Et₃N, and subsequent addition of **12** to the reaction flask.¹⁷ Chromatographic purification gave (+)-(3*S*,4*R*)-cisapride **14** in 64% isolated yield over the 2 steps (Scheme 2).

3. Conclusion

In conclusion, a concise asymmetric synthesis of the gastroprokinetic agent (+)-(3*S*,4*R*)-cisapride {(+)-(3*S*,4*R*)-*N*(1)-[3'-(4"-fluorophenoxy)propyl]-3-methoxy-4-(2"'-methoxy-4"'-amino-5"'-chlorobenzamido)piperidine} from commercially available starting materials has been developed. The key step of this synthesis employs the diastereoselective conjugate addition of lithium (*R*)-*N*-benzyl-*N*-(-methylbenzyl)amide to *tert*-butyl 5-[*N*-3'-(4"-fluorophenoxy)propyl-*N*-allylamino]pent-2-enoate and in situ enolate oxidation with (–)-camphorsulfonyloxaziridine to set the (3*S*,4*R*)-configuration found within the piperidine ring of the product. This synthesis proceeds in 9 steps from commercially available 1-(4'-fluorophenoxy)-3-bromopropane with an overall yield of 19%.

References

- 1. Georgiadis, G. T.; Markantonis-Kyroudis, S.; Triantafillidis, J. K. Ann. Gastroenterol. 2000, 13, 269.
- Van Daele, G. H. P.; De Bruyn, M. F. L.; Sommen, F. M.; Janssen, M.; Van Nueten, J. M.; Schuurkes, J. A. J.; Niemegeers, C. J. E.; Leysen, J. E. *Drug Dev. Res.* 1986, 8, 225.
- Clin. Pharm. 1993, 12, 876 (News); Barone, J. A.; Jessen, L. M.; Colaizzi, J. L.; Bierman, R. H. Ann. Pharmacother. 1994, 28, 488.
- Nurko, S.; Garcia-Aranda, J. A.; Guerrero, V. Y.; Worona, L. B. J. Pediatr. Gastroenterol Nutr. 1996, 22, 3; Cucchiara, S. J. Pediatr. Gastroenterol Nutr. 1997, 25, 250.
- Tonini, M.; De Ponti, F.; Di Nucci, A.; Crema, F. Aliment. Pharmacol. Ther. 1999, 13, 1585.

- 6. Michalets, E. L.; Williams, C. R. Clin. Pharmacokinet. 2000, 39, 49.
- 7. Gray, N. M.; Young, J. W. US Patent 5,629,328.
- Sakaguchi, J.; Iwasaki, N.; Iwanage, Y.; Saito, T.; Takakhara, E.; Kato, H.; Hanaoka, M. *Chem. Pharm. Bull.* **2001**, *49*, 424; McKinnell, R. M.; Armstrong, S. R.; Beattie, D. T.; Choi, S.-K.; Fatheree, P. R.; Gendron, R. A. L. *J. Med. Chem.* **2009**, *52*, 5330.
- For previous syntheses of (±)-(*RS*,*SR*)-cisapride, see ref 2 and Kim, B. J.; Pyun, D. K.; Jung, H. J.; Kwak, H. J.; Kim, J. H.; Kim, E. J.; Jeong, W. J.; Lee, C. H. Synth. Commun. 2001, 31, 1081; Cossy, J.; Molina, J. L.; Desmurs, J.-R. Tetrahedron Lett. 2001, 42, 5713. For a previous formal synthesis of (+)-(3S,4R)-cisapride, see: Shirode, N. M.; Likhite, A. P.; Gumaste, V. K.; Rakeeb, A.; Deshmukh, A. S. Tetrahedron 2008, 64, 7191.
- N,N-Di-[3-(4'-fluorophenoxy)propyl]-N-allylamine (the product of Ndialkylation) was also isolated from this reaction in 10% yield.
- 11. Chesney, A.; Marko, I. E. Synth. Commun. 1990, 20, 3167.
- Enantiopure (*R*)-α-methylbenzylamine (99% ee) is commercially available. Reductive alkylation of (*R*)-α-methylbenzylamine upon treatment with benzaldehyde and NaBH₄ gave (*R*)-*N*-benzyl-*N*-(α-methylbenzyl)amine; subsequent deprotonation with BuLi in THF generated a pink solution of lithium (*R*)-*N*-benzyl-*N*-(α-methylbenzyl)amide 5.
- Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry 1991, 2, 183; Davies, S. G.; Garrido, N. M.; Kruchinin, D.; Ichihara, O.; Kotchie, L. J.; Price, P. D.; Price Mortimer, A. J.; Russell, A. J.; Smith, A. D. Tetrahedron: Asymmetry 2006, 17, 1793; Davies, S. G.; Mulvaney, A. W.; Russell, A. J.; Smith, A. D. Tetrahedron: Asymmetry 2007, 18, 1554. For a review, see: Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833.
- Bunnage, M. E.; Chernega, A. N.; Davies, S. G.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1994, 2373; Bunnage, M. E.; Davies, S. G.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1994, 2385.
- 15. For applications of our aminohydroxylation procedure, see: Bunnage, M. E.; Burke, A. J.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem. 2003, 1, 3708; Abraham, E.; Candela-Lena, J. L.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Roberts, P. M.; Russell, A. J.; Sánchez-Fernández, E. M.; Smith, A. D.; Thomson, J. E. Tetrahedron: Asymmetry 2007, 18, 2510; Abraham, E.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem. 2008, 6, 1655; Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sánchez-Fernández, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665; Davies, S. G.; Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Savory, E. D.; Smith, A. D. Tetrahedron: Asymmetry 2009, 20, 758; Brock, E. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. Org. Lett. 2011, 13, 1594; Csatayová, K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Wilson, D. L. Org. Lett. 2011, 13, 2606.
- 16. Garro-Helion, F.; Merzouk, A.; Guibé, F. J. Org. Chem. 1993, 58, 6109.
- Also see: Janssen, C. G. M.; Lenoir, H. A. C.; Thijssen, J. B. A.; Knaeps, A. G.; Heykants, J. J. P. J. *Labelled Compd. Radiopharm.* **1987**, *24*, 1493; Lee, J. S.; Oh, Y. S.; Lim, J. K.; Yang, W. Y.; Kim, I. H.; Lee, C. W.; Chung, Y. H.; Yoon, S. J. Synth. Commun. **1999**, *29*, 2547.