
LETTER 591

Methodology for the Synthesis of Substituted 1,3-Oxazoles
Methodology for the Synthesis of Substituted 1,3-OxazolesDavid R. Williams,* Liangfeng Fu
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
Fax +1(812)8558300; E-mail: williamd@indiana.edu
Received 22 December 2009
Dedicated to Prof. Gerald Pattenden on the occasion of his 70th birthday

SYNLETT 2010, No. 4, pp 0591–059401.03.2010
Advanced online publication: 08.02.2010
DOI: 10.1055/s-0029-1219374; Art ID: D37509ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: The halogen dance isomerization is a facile and prepara-
tively effective pathway for the synthesis of 2,4,5-trisubstituted 1,3-
oxazoles.
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In recent years, structural elucidation studies of biologi-
cally significant natural products have frequently incorpo-
rated novel 1,3-oxazole ring systems within complex
molecular architectures. Numerous examples include
hennoxazole A,1 phorboxazoles A and B,2 diazonamides
A and B,3 rhizopodin,4 telomestatin,5 and the ulapualides.6

In addition, 1,3-oxazole moieties are commonly displayed
within depsipeptides as a result of oxidative cyclodehy-
drations of serine and threonine residues.7 These structur-
al features have inspired widespread inclusion of
substituted 1,3-oxazoles in medicinal chemistry, and par-
ticularly in the design of peptidomimetics. The prolifera-
tion of complex structures for challenging syntheses has
ignited renewed interests in the development of effective
methodologies toward substituted oxazoles. We have pre-
viously described an oxidative cyclodehydration route as
a general strategy for the de novo preparation of 2,4-di-
substituted 1,3-oxazoles.8 Studies toward the elaboration
of the oxazole nucleus have reported cross-coupling reac-
tions of alkenylation and arylation at C-29 as well as Stille
reactions of 2-phenyl-1,3-oxazoles.10

Efforts for elaboration of the oxazole nucleus can be
greatly facilitated by site-selective formation of a reactive
carbanion. Kinetic deprotonation of the C-2 hydrogen of
the parent oxazole provides access to a ring-closed carb-
anion as well as the ring-opened isonitrile enolate.11 C-
Acylations of the enolate produce 4,5-disubstituted ox-

azoles via the Cornforth rearrangement.12 Examples of
site-selective ring metalations via complex-induced prox-
imity effects13 (CIPE) have been recorded in [2,4]-
bisoxazoles14 and for 2-methyl-1,3-oxazole-4-carboxylic
acid.15 Furthermore, Stambuli and coworkers have recent-
ly described the selective C-5 deprotonation of 2-meth-
ylthio-1,3-oxazole leading to the production of 2,5-
disubstituted oxazoles, and we have reported related stud-
ies of C-5 deprotonation using 2-phenylsulfonyl-1,3-ox-
azoles.16

In this letter, we describe the kinetic C-4 deprotonation of
5-bromo-2-phenylthio-1,3-oxazole (1a) which initially
leads to the lithium species 1b. Upon warming to 0 °C, an-
ion 1b undergoes efficient isomerization to afford the
reactive 5-lithio-4-bromo-2-phenylthio-1,3-oxazole (2a).
Reactions of 2a with a variety of electrophiles yield the
trisubstituted oxazoles 3. Transmetalation of the lithium
species 2a provides the zinc reagent 2b for effective
Negishi cross-coupling processes to give products of al-
kenylation and arylation at the C-5 position (Scheme 1).

The nature of the isomerization which leads from the 5-
bromo heterocycle 1a to yield the 4-bromo derivative 2a
is described as the halogen dance (HD) reaction. This
base-induced migration has been studied in aromatic and
heteroaromatic systems.17,18 Strangeland and Sammakia
demonstrated the first example of the halogen dance in a
1,3-thiazole system,19 and Stanetty and coworkers have
recently published the only oxazole example of this halo-
gen migration in their studies of 5-bromo-2-phenyl-1,3-
oxazole.20

In the course of our studies of 2,5- and 2,4-disubstituted
oxazoles, we have found that the base-catalyzed halogen
exchange of 2-phenylthio-5-bromo-1,3-oxazole 121 is a
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facile process with considerable synthetic utility. Thus,
treatment of 1a with LDA at –78 °C leads to deprotona-
tion at C-4 providing 1b which subsequently undergoes
rapid halogen exchange with starting 1a. This process
generates the intermediates 5 and 6 thereby facilitating a
final bromine transfer to produce the more stable lithium
reagent 2a (Scheme 2). After stirring at 0 °C (45 min), so-
lutions of 2a were cooled to –78 °C for the introduction of
various electrophiles. Upon warming to 22 °C, reaction
mixtures were quenched, and the products were purified
by flash silica gel chromatography prior to full character-
ization. A survey of our results is complied in Table 1, and
illustrates useful yields in a number of alkylation process-
es including condensations with aldehydes and ketones
(entries 5–9 of Table 1). Our conditions permit facile

isomerization of the 5-bromo compound 1a to yield the
corresponding 4-bromo-1,3-oxazole (Table 1, entry 1),
which serves as an important precursor for the regiocon-
trolled synthesis of 2,4-disubstituted oxazoles. Addition-
ally, the regioselective introductions of 5-iodo, 5-stannyl,
and 5-silyl functionality (Table 1, entries 2–4) advance
new opportunities for site-specific reactivity in these het-
erocycles. Our efforts have also recorded the transmetala-
tion of 2a to provide 2b via the addition of anhydrous
ZnBr2 in THF at 0 °C. As a result, these studies provide
for cross-coupling reactions with aryl and alkenyl iodides
(entries 10–13 of Table 1) affording 67% to 80% yields of
highly functionalized 2,4,5-trisubstituted 1,3-oxazoles.22
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In summary, our studies have shown that the halogen
dance isomerization is a synthetically viable process that
can be used to develop molecular complexity in the prep-
aration of 2,4,5-trisubstituted 1,3-oxazoles. Selective re-
placement reactions of the 2-phenylthio and 4-bromo
substituents of our products will enhance the generality
and scope of our observations. Applications for the devel-
opment of this chemistry in natural product synthesis are
currently under way in our laboratories.
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