Reaction of *N***-Sulfinyltrifluoromethanesulfonamide** with Triphenylphosphine and Triphenylphosphine Oxide

L. L. Tolstikova, A. V. Bel'skikh, and B. A. Shainyan

Favorskii Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: bagrat@irioch.irk.ru

Received February 11, 2010

Abstract—The reaction of *N*-sulfinyltrifluoromethanesulfonamide with triphenylphosphine and triphenylphosphine oxide or of trifluoromethanesulfonamide with dichloro(triphenyl)phosphorane leads to trifluoro-*N*-(triphenyl- λ^5 -phosphanylidene)methanesulfonamide, which is hydrolyzed to trifluoromethanesulfonamide and triphenylphosphine oxide via the intermediate trifluoro-*N*-[hydroxy(triphenyl)phosphoranyl]methanesulfonamide.

DOI: 10.1134/S107036321006023X

Reactions of *N*-sulfinylsulfonamides RSO_2NSO (R = Me, *p*-Tol) with triphenylphosphine, -oxide, -sulfide, -phenylimine afford phosphazenes $RSO_2N=PPh_3$ in moderate to good yields [1, 2].

$$RSO_2N=S=O + Ph_3P=X \rightarrow RSO_2N=PPh_3 + XSO, (1)$$
$$X = LP, O, S, NPh.$$

Mixed triarylphosphazosulfonylaryls $ArSO_2N=$ PAr'₂Ar", $ArSO_2N=$ PAr'Ar"Ar" are prepared by the reaction of dichloro(triarylphosphoranes with arenesulfonamides or *N*,*N*-dichlorosulfonamides [Eqs. (1), (2)] and by oxidative imination of triarylphosphines with *N*,*N*-dichlorosulfonamides [Eq. (4)], sodium salts of *N*-chlorosulfonamides [Eq. (5)] or arenesulfonylazides [Eq. (6)] [3].

$$ArSO_2NH_2 + Cl_2PR_3 -HCl$$
(2)

$$\operatorname{ArSO}_{2}\operatorname{NCl}_{2} + \operatorname{Cl}_{2}\operatorname{PR}_{3} \quad -\operatorname{Cl}_{2} \qquad (3)$$

$$\operatorname{ArSO}_2\operatorname{NCl}_2 + \operatorname{PR}_3 \longrightarrow \operatorname{ArSO}_2\operatorname{N=PR}_3 (4)$$

$$ArSO_2NNaCl + PR_3$$
 -NaCl (5)

$$\operatorname{ArSO}_2 N_3 + PR_3 \tag{6}$$

As noted in [3], reaction (6) is the least practical since it is followed by the formation of difficultly separable side products, although the triphenylphosphine reacts smoothly with polyfluorinated sulfonylazide under mild conditions to form the corresponding phosphazene in 66% yield, which is readily hydrolyzed in air [4].

$$R_{F}SO_{2}N_{3} + Ph_{3}P \xrightarrow{-N_{2}} R_{F}SO_{2}N = PPh_{3}$$

$$\xrightarrow{H_{2}O} R_{F}SO_{2}NH_{2} + Ph_{3}PO, \qquad (7)$$

$$R_{F} = H(CF_{2})O(CF_{2})_{2}.$$

The oxidative imination of triphenylphosphine with *N*,*N*-dichloro(polyfluoroalkane)sulfonamides also proceeds in high yields (>70%) [5].

$$PPh_{3} + R_{F}SO_{2}NCl_{2} \xrightarrow{Zn} R_{F}SO_{2}N = PPh_{3}, \quad (8)$$
$$R_{F} = I(CF_{2})_{2}O(CF_{2})_{2}; H(CF_{2})_{2}O(CF_{2})_{2}.$$

The known methods of synthesis of fluorinated phosphazenes $R_FSO_2N=PPh_3$ are limited to the aforementioned reactions (7), (8) [4, 5]. In connection with this and in continuation of our studies of the phosphorus-containing derivatives of triflamide [6] we have studied the reaction of *N*-sulfinyltrifluoromethane-sulfonamide CF₃SO₂NSO (I) with triphenylphosphine and triphenylphosphine oxide.

The reaction of compound I with triphenylphosphine in benzene at room temperature results in the formation of trifluoro-*N*-(triphenyl- λ^5 -phosphanylidene)methanesulfonamide CF₃SO₂N=PPh₃ (II) in nearly quantitative yield.

$$CF_3SO_2N=S=O+PPh_3 \rightarrow CF_3SO_2N=PPh_3 + SO.$$
(9)
I II

The reaction of compound I with triphenylphosphine oxide in benzene also results in product II, although the reaction proceeds much more slowly. According to the ³¹P NMR spectroscopy data, the conversion of triphenylphosphine oxide after 2 h at 80°C was as low as 7%.

$$CF_{3}SO_{2}N=S=O+O=PPh_{3} \xrightarrow{-SO_{2}} CF_{3}SO_{2}N=PPh_{3}.$$
(10)
I II

We believe that the reasons for a substantially lower activity of triphenylphosphine oxide as compared to triphenylphosphine in the reaction with compound I are similar to those in the reaction of oxidation of sulfides into sulfoxides and of sulfoxides into sulfones as we have considered earlier [7]. Reaction (9) consists in a nucleophilic attack of the lone pair of the phosphorus atom in Ph₃P on the electrondeficient nitrogen atom in $TfN^+-S=O$; similar to that the oxidation of sulfides is a nucleophilic attack of the lone pair (LP) of the sulfur atom on the oxygen atom of the oxidant. On the contrary, reaction (10) is a nucleophilic attack of the nitrogen LP in compound I on the electrophilic phosphorus atom of Ph₃P=O, like the oxidation of sulfoxides consists in a nucleophilic attack of the oxidant on the sulfur atom in R₂SO. Extremely low basicity of nitrogen atom in compound I results in the low reactivity of triphenylphosphine oxide.

Product **II** was independently synthesized by the reaction of *N*-trifluoromethanesulfonamide CF_3SO_2 · NH_2 **III** with dichloro(triphenyl)phosphorane prepared *in situ* by the chlorination of triphenylphosphine with phosphorus pentachloride.

$$CF_{3}SO_{2}NH_{2} + PPh_{3}Cl_{2} \xrightarrow{-HCl} CF_{3}SO_{2}N = PPh_{3}.$$
(11)
III III

The structure of product II was proved by the presence of doublet signals of the C_o , C_m , C_p carbon atoms split by coupling with the phosphorus atom in the ¹³C NMR spectrum and a quartet of doublets of the CF₃ group. A specific difference of the ¹³C NMR spectra of compound II and triphenylphosphine oxide is that in Ph₃PO the C_i atom gives the most downfield signal (133 ppm), while in product II it is the most upfield signal of the phenyl group (126 ppm). In the ¹H NMR spectrum of product II the signals of the H_o, H_m, H_p protons are separated, in contrast to the PPh₃ spectrum where they all resonate as a singlet at 7.36 ppm. The ¹H NMR spectrum of product II is

qualitatively similar to that of triphenylphosphine oxide but the signals are shifted downfield by 0.10 (H_o, H_m) and 0.14 ppm (H_p) relative to the corresponding signals of Ph₃P=O. The signal in the ³¹P NMR spectrum is also shifted downfield relative to triphenylphosphine by 26 ppm.

The molecular ion peak is lacking in the mass spectrum of compound **II**. The main fragment ion $[Ph_3PNSO_2]^+$ with m/z 340 corresponds to elimination of CF₃ from the molecular ion. Similar fragmentation is characteristic of trifluoro-*N*-(trichloro- λ^5 -phosphanyl-idene)methanesulfonamide CF₃SO₂N=PCl₃ [8].

After staying in the solution, new signals of a minor product appear in the NMR spectra of product **II**, as shown in the figure by the example of the ¹³C NMR spectrum.

Complete resemblance of the ¹³C NMR spectra is indicative of the presence of the same groups in the formed product as in compound II, that is, Ph₃P and NSO₂CF₃. In the ³¹P NMR spectrum, two signals at 52 (minor) and 21 ppm are observed, and the J_{CP} constants in the ³¹P NMR spectrum measured for these signals from ${}^{13}C$ satellites coincide with the J_{CP} constants in the ¹³C NMR spectrum for the C_i carbon signals in the minor product and in compound II, respectively. In the ¹⁹F NMR spectrum two signals are present at -78.45 ppm (minor) and -79.34 ppm (major). In the ¹H NMR spectrum, apart from the signals of aromatic protons, a downfield signal appears at 11.5 ppm. The similarity of the ¹³C NMR spectra and substantial difference of the ³¹P chemical shifts, as well as almost complete coincidence of the minor ¹⁹F signal with that of triflamide (-78.52 ppm) allow to conclude that the minor product is the product of hydration of trifluoro-N-(triphenyl- λ^5 -phosphanylidene)methanesulfonamide trifluoro-N-[hvdroxy(triphenyl)phosphoranyl]-**(II)**. methanesulfonamide (IV), which is the intermediate product of hydrolysis before the formation of triflamide and triphenylphosphine oxide.

Therefore, the reaction of *N*-sulfinyltrifluoromethanesulfonamide with triphenylphosphine and triphenylphosphine oxide, as well as the reaction of trifluoromethanesulfonamide with dichloro(triphenyl)-

¹³C NMR spectrum of the partly hydrolyzed compound II. (1) signals of trifluoro-*N*-(triphenyl- λ^5 -phosphanylidene)-methanesulfonamide (II) and (2) signals of trifluoro-*N*-[hydroxy(triphenyl)phosphoranyl]methanesulfonamide (IV).

phosphorane leads to trifluoro-*N*-(triphenyl- λ^5 -phosphoranylidene)methanesulfonamide. The latter is easily hydrolyzed in the air or upon staying in the solution to trifluoromethanesulfonamide and triphenyl-phosphine oxide via the intermediate formation of the product of hydration, trifluoro-*N*-[hydroxy(triphenyl)-phosphoranyl]methanesulfonamide.

EXPERIMENTAL

IR spectra were registered on a Bruker Vertex 70 spectrophotometer in KBr pellets. ¹H, ¹³C, ³¹P, ¹⁹F NMR spectra were recorded on a Bruker DPX 400 spectrometer at working frequencies of 400 (¹H), 100 (¹³C), 162 (³¹P), 376 MHz (¹⁹F) in CDCl₃, chemical shifts are given relative to TMS (¹H, ¹³C), H₃PO₄ (³¹P) and CCl₃F (¹⁹F). Electron impact mass spectrum (70 eV) was obtained on a GCMS-QP5050A Shimadzu chromatomass spectrometer (quadruple mass analyzer), capillary column SPB-5mS (60 m, 0.25 mm) in the temperature programming mode from 70 to 250°C with

the rate of 10° /min, gas-carrier helium. The temperature of injector and ionic source 250° C.

Reaction of N-trifluoromethanesulfonamide with dichlorotriphenylphosphorane. To a solution of 0.42 g of phosphorus pentachloride in 4 ml of CCl₄ 0.40 g of triphenylphosphine was added at stirring. The reaction mixture was refluxed with stirring for 20 min, then 0.30 g of trifluoromethanesulfonamide was added and stirred for 2 h at room temperature. The solvent was removed in a vacuum. The yield of trifluoro-N- $(triphenyl-\lambda^5-phosphanylidene)$ methane-sulfonamide (II) 0.82 g (100%), mp 124–126°C. IR spectrum, v, cm⁻¹: 3059, 1589, 1485, 1439, 1318, 1251, 1210, 1111, 1096, 997, 794, 729, 691, 612, 534, 501. ¹H NMR, δ, ppm: 7.56 m (6H, H_o), 7.67 m (3H, H_o), 7.77 m (6H, H_m). ¹³C NMR, δ_C , ppm: 120.07 q. d (CF₃SO₂, J_{CF} 320.7, 6.2 Hz), 125.92 d (C_i, J 105.7 Hz), 129.23 d (C_{*m*}, *J* 13.4 Hz), 133.15 d (C_{*o*}, *J* 11.2 Hz), 133.78 d (C_{*p*}, *J* 2.5 Hz). ³¹P NMR, δ_P , ppm: 21.40. ¹⁹F NMR, δ_F , ppm: -79.34. Mass spectrum, m/z (ion, I_{rel} , %): 340

(Ph₃PNSO₂⁺, 100), 201 (Ph₂PO⁺, 38), 122 (PhPN⁺, 38), 77 (Ph⁺, 53), 69 (CF₃⁺, 11), 51 (CHF₂⁺, 38), 46 (SN⁺, 12). Found, %: C 55.44; H 3.68; F 13.57; N 3.42; P 7.56; S 8.06. C₁₉H₁₅F₃NO₂PS. Calculated, %: C 55.75; H 3.69; F 13.92; N 3.42; P 7.57; S 7.83.

Trifluoro-N-[hydroxy(triphenyl)phosphoranyl]methanesulfonamide (IV). ¹³C NMR, δ_{C} , ppm: 119.77 q. d (CF₃SO₂, *J*_{CF} 320.8, 6.3 Hz), 123.36 d (*C_i*, *J* 108.8 Hz), 129.89 d (*C_m*, *J* 13.4 Hz), 132.88 d (*C_o*, *J* 11.6 Hz), 135.23 d (*C_p*, *J* 2.3 Hz). ³¹P NMR, δ_{P} , ppm: 52.42. ¹⁹F NMR, δ_{F} , ppm: -78.45.

Reaction of *N*-sulfinyltrifluoromethanesulfonamide with triphenylphosphine. To a solution of 0.39 g of *N*-sulfinyltrifluoromethanesulfonamide in 5 ml of benzene in argon atmosphere at room temperature 0.52 g of triphenylphosphine in 5 ml of benzene was added with vigorous stirring; the mixture slightly self-heated and turned yellow. The reaction mixture was stirred for 16 h at room temperature, the solvent was removed in a vacuum to obtain 0.82 g (100%) of product II as cream color crystals.

Reaction of *N*-sulfinyltrifluoromethanesulfonamide with triphenylphosphine oxide. To the solution of 0.24 g of *N*-sulfinyltrifluoromethanesulfonamide in 5 ml of benzene in argon atmosphere at room temperature 0.33 g of triphenylphosphine oxide was added with vigorous stirring. The mixture was stirred at 80°C for 2 h and evaporated. The residue (0.50 g), from the data of ${}^{1}\text{H}$, ${}^{13}\text{C}$, ${}^{31}\text{P}$ NMR spectra, was the mixture of triphenylphosphine oxide and product II in the ratio of 13:1.

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (grant no. 10-03-00110).

REFERENCES

- 1. Senning, A., Angew. Chem., 1965, vol. 77, no. 8, p. 379.
- Senning, A., Acta Chem. Scand., 1965, vol. 19, no. 7, p. 1755.
- Shevchenko, V.I., Pinchuk, A.M., and Kirsanov, A.V., *Zh. Obshch. Khim.*, 1965, vol. 35, no. 8, p. 1488.
- Zhu, S.-Z., *Tetrahedron Lett.*, 1992, vol. 33, no. 43, p. 6503.
- Zhu, S.-Z., Xu, B., Qin, C., and Xu, G., *Inorg. Chem.*, 1997, vol. 36, no. 21, p. 4909.
- Tolstikova, L.L., Bel'skikh, A.V., Shainyan, B.A., *Zh. Obshch. Khim.*, 2009, vol. 79, no. 8, p. 1394.
- Shainyan, B.A. and Danilevich, Yu.S., Zh. Org. Khim., 1999, vol. 35, no. 12, p. 1787.
- 8. Iriarte, A.G., Robles, N.L., Cutin, E.H., and Della Vedova, C.O.A., *J. Mol. Struct.*, 2008, vol. 888, p. 7.