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3,4,5-Triaryl-1,2,4-triazoles and  2,5-diaryl-1,3,4-oxadiazoles are 

well known to exhibit a wide range of biological activities 
including anti-bacterial,

1 
anti-inflammatory,

2
 anti-tumour,

3
 anti-

tubercular,
4
 tyrosinase inhibitory,

5
 and cytotoxic

6
 activities.

 

Besides their biological properties, these π-conjugated scaffolds 

find applications in the field of material science.
7
 Due to their 

unique optoelectronic properties these scaffolds have been 

exploited in the development of organic light emitting diodes 

(OLEDs) and utilized in energy efficient, full-color, flat-panel 

displays.
8 

Certain suitably conjugated oxadiazoles are also known 

to perform as multiphoton absorbing systems.
8b 

In outlook of their biological and optoelectronic properties, 

numerous methods have been reported for their synthesis.9 

Generally, 3,4,5-triaryl-1,2,4-triazoles and 2,5-diaryl-1,3,4-

oxadiazoles are synthesized by the cyclodehydration of 
corresponding N-acylamidrazones

10
 and  diacylhydrazines

11 

respectively. Recently, transition-metal catalyzed direct arylation 
of heterocyclic C-H bonds has received significant attention in 

organic synthesis because of their potential for diverse 
transformation into a variety of useful derivatives.12 3,4,5-Triaryl-

1,2,4-triazoles and 2,5-diaryl-1,3,4-oxadiazoles are synthesized 
by the direct arylation of 1,2,4-triazoles and 1,3,4-oxadiazoles 

using CuI/1,10-phenanthroline(phen) catalytic system.
13

 
However, this method has some drawbacks such as requirement 

of organic ligands which make it difficult for the separation and 
purification after the reaction and use of expensive organic 

solvents. Therefore, there is a need to develop more economical, 

ligand-free, eco-friendly and potential alternative methods for the 

synthesis of 3,4,5-triaryl-1,2,4-triazoles and 2,5-diaryl-1,3,4-
oxadiazoles.  

On the other hand, poly(ethylene glycols) (PEGs) are known to 
be nontoxic,  less volatile, thermally stable, eco-friendly, and 

inexpensive media for various organic reactions.
14

  Inspired by 
these advances and in continuation of our work

15
 in development 

of environmentally benign methodologies for various biologically 

active heterocycles using PEG as a reaction medium, herein, we 

report a ligand-free copper catalyzed direct arylation of 3,4-

diaryl-1,2,4-triazoles and 2-aryl-1,3,4-oxadiazoles using aryl 
iodides and PEG-400 as reaction medium  (Scheme 1).  
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Scheme 1. Synthesis of 3,4,5-triaryl-1,2,4-triazoles (3) and 2,5-

diaryl-1,3,4-oxadiazoles (5) 
 

Initially, 3,4-diphenyl-4H-1,2,4-triazole (1a) was treated with 

iodobenzene (2a) in the presence of a catalytic amount of copper 

powder (20 mol%) and K2CO3 (2.5 equiv) in diglyme at 120 
o
C. 

To our delight, the desired product 3a was formed, albeit in a low 
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A ligand-free copper catalyzed approach has been developed to the synthesis of 3,4,5-triaryl-

1,2,4-triazoles and 2,5-diaryl-1,3,4-oxadiazoles by the direct arylation of corresponding 3,4-
diaryl-1,2,4-triazoles and 2-aryl-1,3,4-oxadiazoles with aryl iodides using PEG-400 as reaction 

medium. The procedure is experimentally simple and free from addition of external chelating 

ligands or co-catalysts. 
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yield of 18% (Table 1, entry 1) after 24 h. Next, we optimized 

the reaction conditions in order to increase the yield. Thus, 

different solvents and bases were screened and the results are 
summarized in Table 1. It was found that PEG-400 was the most 

superior solvent and K2CO3 was the most effective base in terms 
of the reaction time and yield of the product (Table 1, entry 6). 

Once we had established suitable solvent and base, we then 
focused on the quantity of copper powder. By decreasing the 

quantity of copper powder from 20 mol% to 10 mol% the yield 
was dropped to 80% even after prolonged reaction time also 

(Table 2, entry 12). In contrast, no improvement of the yield was 
observed by increasing the catalyst loading (Table 2, entry 13). 

The effect of temperature on the reaction was also investigated. 
Faster reactions occurred on increasing the temperature but the 

product yields were not satisfactory (Table 1, entries 14). The 

progress of the reactions was monitored by TLC analysis (using 

EtOAc-hexane as the eluents). 
 

Table 1. Optimization of reaction conditions to 3a
a 

 

N

N

N I N

N

N

1a 2a 3a
 

 
Entry Catalyst 

(mol %) 

Base Solvent Temp  

(oC) 

Time 

(h) 

Yield  

(%)b 

1 20 K2CO3 Diglyme 120 24 18 

2 20 K2CO3 Toluene reflux 24 trace 

3 20 K2CO3 Dioxane reflux 24 25 

4 20 K2CO3 DMSO 120 24 27 

5 20 K2CO3 DMF 120 24 39 

6 20 K2CO3 PEG-400 120 12 88 

7 20 K3PO4 PEG-400 120 24 14 

8 20 KOtBu PEG-400 120 24 9 

9 20 KOH PEG-400 120 24 trace 

10c 20 K2CO3 PEG-400 rt 36 - 

11d 20 K2CO3 PEG-400 120 12 24 

12 10 K2CO3 PEG-400 120 30 80 

13 30 K2CO3 PEG-400 120 12 88 
14 20 K2CO3 PEG-400 150 8 82 

(a) Reaction conditions: 3,4-diphenyl-4H-1,2,4-triazole (1.0 equiv.),   

iodobenzene (1.2 equiv.), base (2.5 equiv.), solvent (5 vol.). 
(b) Isolated yield. 

(c) Reaction performed at room temperature. 

(d) Reaction was performed in air. 
 

Subsequently, with the optimal conditions in hand,
16

 we 

examined the structural diversity of the various aryl iodides as the 
coupling partners. Notably, a wide variety of functionalities 

regardless of the electronic nature of the substituents were 
compatible with the reaction conditions. For example, chloro and 

bromo substituents (Table 2, entries 3j and 3k), electron-
donating groups such as methoxy (Table 2, entry 3d and 3f) and 

methyl (Table 2, 3g-3i) and electron-withdrawing groups 
including a nitro substituent on the aromatic ring (Table 2, entry 

3l) were well tolerated in direct C-H arylation of 1,2,4-triazoles. 

Interestingly, steric bulk of the aryl iodides didn’t affect the 

reactivity, and 82% yield of the product was achieved with 2-

chloro iodobenzene (Table 2, entry 3j). Only aryl iodides are 
effective coupling partners, with aryl bromides and chlorides 

giving little or no product. This result suggests that this method 
should be useful for the chemoselective arylation at iodide-

substituted centers when other halogen substituents are present 
(Table 2, 3j and 3k). To further probe the scope of the reaction, 

a range of 1,2,4-triazoles were converted into corresponding 
products with excellent yields under the established conditions 

(Table 2, entries 3a-3c and 3e). All the synthesized compounds 
are well characterized by advanced spectroscopic analysis (1H 

NMR, 
13

C NMR and Mass).are well characterized by advanced 
spectroscopic analysis (

1
H NMR, 

13
C NMR and Mass). 

Table 2. Synthesis of 3,4,5-triaryl-1,2,4-triazoles (3)a 
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(a) Reaction conditions: 3,4-diaryl-1,2,4-triazole (1) (1.0 equiv.), iodobenzene 

(2) (1.2 equiv.), copper powder (0.2 equiv.), base (2.5 equiv.), solvent (5 vol.) 

and temperature 120 oC. Reported yields are isolated yields. 
 

Motivated by this result, next we undertook the direct arylation of 

1,3,4-oxadiazoles by taking 2-phenyl-1,3,4-oxadiazole as a 
representative example under the optimized conditions. 

Fortunately, we were able to synthesize various 2,5-diaryl-1,3,4-
oxadiazoles (5a-5h) in reasonably high yields (85-89%) 

following the above protocol and the results are presented in 
Table 3. 

 

Table 3. Synthesis of 2,5-diaryl-1,3,4-oxadiazoles
a 
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(a) Reaction conditions: 2-aryl-1,3,4-oxadiazole (4) (1.0 equiv), iodobenzene 

(2) (1.2 equiv.), copper powder (0.2 equiv), base (2.5 equiv.), solvent (5 vol.) 

and temperature 120 oC. Reported yields are isolated yields. 
 

In summary, we have developed a ligand-free copper powder 
catalyzed direct arylation of 3,4-diaryl-1,2,4-triazoles and 2-aryl- 

1,3,4-oxadiazoles with aryl iodides in PEG-400. The present 
method allows a wide range of aryl iodides as arylating reagents 

and provides an easy access to a variety of 3,4,5-triaryl-1,2,4-
triazoles and 2,5-diaryl-1,3,4-oxadiazoles. The use of inexpensive 

copper powder, simple experimental procedure and free from 
addition of external ligands or co-catalyst are the major 

advantages of this method.  
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