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Abstract: The behavior of 1,2-dioxygen derivatives of indane, tetralin, and benzosuberane in acetonitrile-strong

acid media is exploited in the regio- and stereocontrolled syntheses of chiral cis-amino alcohols.

Chiral amino alcohols serve as versatile chiral reagents in a variety of asymmetric processes.! The rigid
benzocycloalk-1-ene-derived cis-1-amino-2-alcohols 1 represent a chemically2 and biologically3 appealing
subclass of these amino alcohols. Despite the potential utility of these conformationally constrained reagents, their
availability has been limiting.4.2b Recently, the chiral 1,2-dioxygen analogues have become available by either
asymmetric epoxidation (AE) or asymmetric dihydroxylation (AD) of the corresponding prochiral olefins (Scheme
1).5 These adducts are excellent precursors to such cis-amino alcohols; however, an effective stereo- and
regioselective conversion of the dioxygen moiety to the cis-amino alcohol has not been developed. Herein, we
disclose a practical preparation of these chiral cis-amino alcohols, either from the epoxides 2 or diols 3 in
acetonitrile-strong acid media.
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Scheme 1

We recently reported a highly selective process for the preparation of cis-1-amino-2-indancl (1a) by
subjecting indene oxide 2a to a Ritter reaction.6 This process proceeds through the acid-induced ring opening of
chiral indene oxide where an equilibrium exists between the C-1 carbenium ion 4a and the C-1 nitrilium
intermediate 5a.7 The apparent selective syn-addition of the nitrile is actually governed by the conformationally
driven formation of the ¢is-5,5-ring derived methyl oxazoline 6a.

If the cis-selectivity of the indane system is controlled by the ring closure to the oxazoline then the larger
ring analogues, such as tetralin or benzosuberane, should give poorer cis-selectivity due to their ability to form
both cis- and trans-systems (6b and 6¢). First, tetralin oxide 2b in acetonitrile with two equivalents of triflic acid
at -40 °C was observed by low temperature NMR studies to generate the trans-methyloxazoline 6b, cis-
methyloxazoline 6b and amido alcohol 8 in a ratio of §:5:1 (Table 1). Warming the reaction mixture did not
change the reaction profile. Hydrolysis provided a mixture of cis- and trans-amino alcohols 1b. Interestingly, the
less reactive acid methanesulfonic acid at -40 °C formed not only trans-6b, cis-6b, and amido alcohol 8 but also
the mesylate 7b in a ratio of 44:6:6:44 (Scheme 2).8 Upon slowly warming this reaction mixture the mesylates

converted mostly to the cis-methyloxazoline 6b providing a 1:1 ratio of cis-/trans-6b. Similarly, benzosuberene
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oxide 2¢ provided a ~ 1:1 ratio of the cis-/trans-methyloxazolines 6c. With indene oxide low temperature NMR
revealed that the same intermediate 7a is formed. However, only the cis-methyloxazoline 6a was obtained.7 This
confirms that the source of the high selectivity in the indane system is from the favored cis-5,5-ring formation.
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Table 1 Epoxides in Acetonitrile/Strong Acid Media

Epoxide Acid cis /trans 62

2a,n=0 TfOH 100:0
MsOH 100:0

2b,n=1 TfOH 37:63
MsOH 50:50

2¢,n=2 TfOH 41:59
MsOH 53:47

a) Measured by NMR at 25 °C

The salient feature of this study is the selective conversion of the mixture of cis-/trans-mesylates 7b to the
cis-methyloxazoline 6b. This indicated that the high reactivity of epoxides may be the cause of the overall non-
selective process with the tetralin and benzosuberane systems. Perhaps, the less reactive diol substrates, in
analogy to the mesylate intermediates, could provide a more selective reaction. Indeed, when the cis- or trans-1,2-
tetralindiol 3b was exposed to two equivalents of triflic acid in acetonitrile at -40 °C followed by warming to room
temperature, >95% cis-methyloxazoline 6b was obtained?. Hydrolysis of 6b followed by isolation, afforded
pure cis-1b (Scheme 3). The other analogues behaved similarly (Table 2), As expected, either cis- or rans-
indandiol 3a provided only the cis-methyl oxazoline 6a.7 The more conformationally flexible benzosuberane
diols 3¢ gave lower cis-selectivity (85%) but certainly higher than obtained with the epoxide 2c.

Key to asymmetric syntheses of these amino alcohols is the stereochemical integrity of the carbon-oxygen
bond at C-2. Thereby, chirality is effectively transferred from the C-2 position to C-1 of the amino alcohol. When
either chiral epoxides or cis- ftrans-diols were used in this process the resultant amino alcohol 1 had the same
optical purity as the starting 1,2-dioxygen-styrene derivatives.10

Since the stereochemistry at the C-1 position of the diols is irrelevant to the resultant stereochemistry of the
amino alcohol, the conversion of a chiral epoxide to a mixture of cis/trans diols could be followed by the
amination conditions to provide a higher ratio of cis- to frans-amino alcohols over that from the epoxide-Ritter
reaction. Indeed, when 2b (84% ee) was first exposed to acid hydrolysis (IN H2S804 at 0 °C in CH2Cla) a
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mixture of cis-and frans-diols 3b was generated.11 The diol mixture when subjected to the acetonitrile/triflic acid
media, followed by hydrolysis of the oxazoline, was converted to >97% cis-amino alcohol 1b, which had an
unchanged optically purity of 84%.
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Table 2 Conversion of Diols 3 to Amino Alcohols 1.

Yield (%)b, % ee of cis-

Diol 3 (% ee) Acid cis-selectivity (%) of 63 aminoalcohol 1e
cis-3a (>99) TfOH 100 87, >99

97% HpSO4¢ 100 81, >99
trans-3a (85) TfOH 100 78, 85
cis-3b (>99) TfOH 99 80, >99

97% H,S04d 98 75, >99
trans-3b (99) TfOH 95 71,99
cis-3¢ TfOH 86 63, -
trans-3c (90) TfOH 85 62, 90

a) Measured by 1H NMR; b) wt% assay by HPLC; c) Indene oxide with 97% H2SO4/CH3CN, 55% yield of cis-1a was
provided; d) Tetralin oxide with 97% H2SO4/CH3CN, ~1:1 mixture of cisftrans-1b was provided.; €} A three-necked
flask under nitrogen atmosphere is charged diol 3 (10 mmol) and acetonitrile (16.5 mL) and cooled to -40
°C. To this slurry is added triflic acid (20 mmol) while maintaining the internal temperature at <-30 °C.
The reaction mixture is warmed to 22 °C and aged for 1.0 h. Water (16.5 mL ) is added to the reaction
mixture and aged for 10 minutes. The reaction mixture is concentrated until the internal temperature
reaches 100 °C by atmospheric distillation and the aqueous reaction mixture is then refluxed at 100 °C
for 5.0 h. After cooling to 22 °C, CH2Cl2 (10.0 mL) is added and stirred for 10 minutes. The two phases
are separated and the aqueous layer is assayed by HPLC for cis-amino alcohol 1. The cis-amino alcohol is

isolated after basification of the aqueous layer to pH 12.5- 13.

The valuable findings described herein clearly offer a simple practical solution to the preparation of
chemically and pharmacologically useful chiral cis-amino alcohols from the corresponding prochiral olefins. The
mechanism of this highly cis-selective process via the diols is currently under investigation.
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