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Abstract: The behavior of I ,2-dio,tygen derivative5 of indane, tetralin, and benzosuberane in aceronitrile-strong 

acid media is exploited in the regio- and stereoconmlled syntheses of chiral cis-amino alcohols. 

Chiral amino alcohols serve as versatile chiral reagents in a variety of asymmetric processes.’ The rigid 

benzocycloalk- 1-ene-derived cis- 1 -amino-2-alcohols 1 represent a chemically2 and biologically3 appealing 

subclass of these amino alcohols. Despite the potential utility of these conformationally constrained reagents, their 
availability has been limiting. 4.2b Recently, the chiral 1,2-dioxygen analogues have become available by either 

asymmetric epoxidation (AE) or asymmetric dihpdroxylation (AD) of the corresponding prochiral olefms (Scheme 

1).5 These adducts are excellent precursors to such cis-amino alcohols; however, an effective stereo- and 

regioselective conversion of the dioxygen moiety to the cis-amino alcohol has not been developed. Herein, we 

disclose a practical preparation of these chiral cis-amino alcohols, either from the epoxides 2 or dials 3 in 
acetonitile-strong acid media. 

Scheme 1 

Q ” 
AEorAD_ d; or &OH ) GoH 

2 3 1 

a: n=O; b “~1: c. 11x2 

We recently reported a highly selective process for the preparation of cis-1-amino-Z-indanol (la) by 

subjecting indene oxide 2a to a Ritter reaction.6 This process proceeds through the acid-induced ring opening of 

chiral indene oxide where an equilibrium exists between the C-l carbenium ion 4a and the C-l nitrilium 
intermediate 5a.7 The apparent selective on-addition of the nitrile is actually governed by the conformationally 

driven formation of the cis-5,5-ring derived methyl oxazoline 6a. 

If  the cis-selectivity of the indane system is controlled by the ring closure to the oxazoline then the larger 

ring analogues, such as tetralin or benzosuberane, should give poorer cis-selectivity due to their ability to form 

both cis- and aanc-systems (6b and 6~). First, tetralin oxide 2b in acetonitrile with two equivalents of triflic acid 

at -40 “C was observed by low temperature NMR studies to generate the trans-methyloxazoline 6b, cis- 

methyloxazoline 6b and amido alcohol 8 in a ratio of 85: 1 (Table 1). Warming the reaction mixture did not 

change the reaction profile. Hydrolysis provided a mixture of cis- and rruns-amino alcohols lb. Interestingly, the 

less reactive acid methanesulfonic acid at -40 ‘C formed not only rrans-6b, cis-6b, and amido alcohol 8 but also 

the mesylate 7b in a ratio of 44:6:6:44 (Scheme 2).8 Upon slowly warming this reaction mixture the mesylates 

converted mostly to the cis-methyloxazoline 6b providing a 1: I ratio of cis-/truns-6b. Similarly, benzosuberene 
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oxide 2c provided a - 1: 1 ratio of the cis-ltmns-methyloxazolines 6c. With indene oxide low temperature NMK 
revealed that the same intermediate 7a is formed. However, only the cis-methyloxazoline 6a was obtained7 This 

confirms that the source of the high selectivity in the indane system is from the favored cis-5.5ring formation. 
Scheme 2 

II 8: n = 0; b: n = 1; c: h=2 

Table 1 Epoxides in Acetonitrile/Strong Acid Media 
Epoxide Acid cis Jtratts 6a 

2a, n = 0 

2b,n= 1 

2c, n = 2 

TfOH loo:0 
MsOH loo:0 
TfOH 37:63 
h4sOH 5050 
TfOH 41:59 

I MsOH 53:47 
a) Measured by NMR at 25 “C 

The salient feature of this study is the selective conversion of the mixture of cis-/tram-mesylates 7b to the 

cis-methyloxazoline 6b. This indicated that the high reactivity of epoxides may be the cause of the overall non- 
selective process with the tetralin and benzosuberane systems. Perhaps, the less reactive dial substrates, in 

analogy to the mesylate intermediates, could provide a more selective reaction. Indeed, when the cis- or rran.r-1,Z 
tetralindiol3b was exposed to two equivalents of triflic acid in acetonitrile at -40 “C followed by warming to room 
temperature., >95% cis-methyloxazoline 6b was obtainedg. Hydrolysis of 6b followed by isolation, afforded 

pure d-lb (Scheme 3). The other analogues behaved similarly (Table 2). As expected, either cis- or truns- 
indandiol 3a provided only the k-methyl oxazoline 6a .7 The more conformationally flexible benzosuberane 
diols 3c gave lower cis-selectivity (85%) but certainly higher than obtained with the epoxide 2c. 

Key to asymmetric syntheses of these amino alcohols is the stereochemical integrity of the carbon-oxygen 
bond at C-2. Thereby, chirality is effectively transferred from the C-2 position to C-l of the amino alcohol. When 
either chiral epoxides or cis- /rrurt.r-dials were used in this process the resultant amino alcohol 1 had the same 

optical purity as the starting 1,2dioxygen-styrene derivatives.10 
Since the stereochemistry at the C-l position of the diols is irrelevant to the resultant stereochemistry of the 

amino alcohol, the conversion of a chiral epoxide to a mixture of cislrrans diols could be followed by the 
amination conditions to provide a higher ratio of cis- to [runs-amino alcohols over that from the epoxide-Ritter 
reaction. Indeed, when 2b (84% ee) was first exposed to acid hydrolysis (1N H2SO4 at 0 “C in CH2C12) a 
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mixture of cl-and OWLS-diols 3b was generated t t The dial mixture when subjected to the acetonitrile/triflic acid 
media, followed by hydrolysis of the oxaxoline, was converted to 797% cis-amino alcohol lb, which had an 

unchanged optically purity of 84%. 
Scheme 3 

a: “CO; b: a= 1; c: n=2 

Table 2 Conversion of Diols 3 to Amino Alcohols 1. 

Yield (%)n, % ee of cis- 

Dio13 (95 ee) Acid cis-selectivity (%) of 6a aminoalcohol le 

cis3a (799) TfOH 100 87, 799 
97 % H2S Oqc 100 81, >99 

pans-3a (85) TfOH 100 78, 85 

cis-3b (799) TfOH 99 80,799 

97% H2S04d 98 75, 799 

nunr3b (99) TfOH 95 71,99 

cis-3c TfOH 86 63, - 

1 

truns-3c (90) TfOH 85 62,90 J 
a) Measured by ‘H NMR, b) ~1% assay by HPLC; c) Indene oxide with 97% H2S04/CH$N, 55% yield of k-18 was 
provided; d) Tetralin oxide with 97% H2SO&H3CN, -1:l mixture of cis/trans-lb was provided.: e) A three-necked 
flask under nitrogen atmosphere is charged dial 3 (10 mmol) and acetonitrile (16.5 mL) and cooled to -40 
“C. To this slurry is added triflic acid (20 mmol) while maintaining the internal temperature at c-30 “C. 
The reaction mixture is warmed to 22 “C and aged for 1.0 h. Water (16.5 mL ) is added to the reaction 
mixture and aged for 10 minutes. The reaction mixture is concentrated until the internal temperature 
reaches 100 “C by atmospheric distillation and the aqueous reaction mixture is then refluxed at 100 “C 
for 5.0 h. After cooling to 22 “C. CH2Cl2 (10.0 mL) is added and stirred for 10 minutes. The two phases 
are separated and the aqueous layer is assayed by HPLC for cis-amino alcohol 1. The c&amino alcohol is 
is&ted after basification of the aqueous layer to pH 12.5- 13. 

The valuable findings described herein clearly offer a simple practical solution to the preparation of 
chemically and pharmacologically useful chiral cis-amino alcohols from the corresponding prochiral olefins. The 
mechanism of this highly cis-selective process via the diols is currently under investigation. 
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