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The Sulfur Diatomics: Generation and Trapping Chemistry

DAVID N. HARPP

Department of Chemistry, McGill University, Montreal, Canada

Aspects of the generation and trapping of diatomic sulfur (S2) and sulfur

monoxide (SO) are reviewed with special emphasis on recent work.

INTRODUCTION

The major, symmetric diatomic molecules (H2, N2, O2) have been known

for over 200 years.1 While CI2 was produced in 1630, the other halogen

diatomics are discoveries of the 19th century. The unsymmetrical diatomics are

many in number, with the oldest being muriatic acid (HCl) which dates from as

far back as A.D. 900, with clear references to it as aqua regia by the year 1200;

the discovery of HF even predates that of N2.1

One of the most interesting mixed diatomics in recent years has been nitric

oxide (NO) which is responsible for numerous biological effects as a

neurotransmitter and likely has roles in memory and learning.2 Over 3500 papers

were published on this molecule in 1995 alone. Considerable research has been

carried out on S-nitrosothiols as transporters of NO.2c

DIATOMIC SULFUR

For the past several years, we have been interested in finding methods to

generate and study the chemistry of the two main sulfur diatomics, S2 and SO.

Diatomic sulfur has been known for about half a century,3 its electronic structure

explored4 and the dissociation energy determined (101.7 kcal/m)5. It is the

predominant sulfur allotrope above 720 °C and the main component of the vapor

above FeS2 at 850 °C. The stability of this gas at high temperature is

considerable and the ground state of the molecule is a triplet.1

41
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42 DAVID N. HARPP

Recently, S2 was detected by the Hubble telescope in Jupiter's dark spot
resulting from the impact of the G fragment of the Comet Shoemaker-Levy 9.6

One unusual invention apparently involving diatomic sulfur, is a device called
"The Sulfur Lamp" which produces bright white light by exposing a small amount
of sulfur to microwave radiation.7

In 1975, Jahn and Schmidt8 reported a photolysis reaction of thione ester
1, portraying S2 as being lost from a probable intermediate 2. There was a
variety of sulfurated products formed in this reaction and the yield of trapped
disulfide 3 was only 2% (Eq. 1). It is not fully clear whether this was a clean
trapping of the elusive S2, or a result of some other process. Nonetheless, it
appears to be the first record of diatomic sulfur generation and trapping.

S Ss
II

CH3COEt
hv -s.

diene

Eq. 1

1 L - J 3

In spite of many synthetic explorations concerning this molecule/ relatively
little was accomplished in terms of its formation and general synthetic utility until
the work of Steliou in 1984.10 His method of delivery of S2 parallels a procedure
for the generation of singlet oxygen. When germanium trisulfide 4 is treated with
phosphine derivative 5, a trithiaozonide 6 intermediate is likely produced which
apparently decomposes into stable products and delivers S2 (Eq. 2); this reactive
species is trapped by a variety of dienes in good, overall yield.

R3Ge-SSS-GeR3

4

Ph3PBr2

S

6

Ph3P=S + S2
Eq.2

Since this seminal discovery, a variety of groups have reported methods to
deliver S2; of considerable interest are the varied molecules that have served as
precursors. In 1985, Cava reported11 that S2 was lost from the decomposition of
a possible transient 1,2-dithietane 7 likely formed from a Diels-Alder addition of
dithione 8 via its 1,2-dithiete tautomer 9 (Eq. 3); trapping experiments were not
carried out.
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THE SULFUR DIATOMICS 43

Eq.3

A very inventive approach is also due to Steliou12 who showed in 1987 that
biphenyl derivative 10, when sulfurated with B2S3 (generated in situ), effectively
delivers S2 to dienes likely via dithietane intermediate 11 (Eq. 4). He was able to
trap diatomic sulfur with four dienes in yields of ca. 75%.

+ S2 Eq. 4

Also in 1987, Schmidt reported13 the decomposition of tetrachalcogenide
12 which delivered S2 to several dienes in ca. 50% isolated yield (Eq. 5). In
addition, Ando14 prepared a precursor to anthracene endodisulfide and was
successful in obtaining diene trapping.

heat

dienes >CSe

Se Eq.5

Using different metallocene pentasulfides 13 in combination with
dibromide 5, our group showed1^ that diatomic sulfur could be trapped in low to
moderate yield (Eq. 6). This form of decomposition is a parallel process with the
one in the first Steliou paper.10

Ph3PBr2

5

Ph3P=S +2S2 - 6

13
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44 DAVID N. HARPP

One interesting compound which delivers S2 was reported by Nicolaou.16

Dithiatopazine (14) possesses (crystal structure/theoretical calculations) a stable
1,2-dithietane ring which, when heated with 2,3-diphenyl-l,3-butadiene (15a),
delivers one S2 unit to 15a affording disulfide 16a in 25% yield; apparently 16a
adds another S2 fragment giving cyclic tetrasulfide 17a in an isolated yield of 28%
(Eq.7).

Eq.7

14 16a 17a

A cyclic polysulfide 18 was used to transfer S2 to dienes in yields averaging
55%17. There have been a number of related molecules synthesized by several
groups18 which appear to have potential to serve as sources of S2; however,
trapping experiments were not carried out.

18

In 1992, Gilchrist reported a Diels-Alder reversion of bicyclic disulfide 19.
This molecule was independently prepared by a dithiol oxidation; it is formally
the Diels-Alder adduct of cyclopentadiene and S2. Structure 19 undergoes a
cycloreversion to transfer S2 to diene 15b (2,3-dimethyl-l,3-butadiene) in low
yield giving cyclic disulfide 16b and tetrasulfide 17b (Eq. 8).19

* ^ Eq.8KXMe

19 16b

We have been able to generate a variety of diatomic sulfur precursors of
quite diverse structure. Thiuram disulfide 20 was observed by Cava20 to lose
sulfur (apparently by a diatomic fragment) upon chlorination with SO2CI2. We
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THE SULFUR DIATOMICS 45

repeated this chemistry with appropriate diene traps and found evidence of
diatomic sulfur loss (however, a low yield of trapped products) from the reaction,
likely through chlorinated intermediate 21 (Eq. 9).21

SO2CI2

N
\

20

Cl-S-S-S
II

o
21

jlo
N Eq.9

A potentially useful precursor has recently been discovered, involving an
opportunity to access 1,2-dithietanes. We have found22 when
triphenylmethanethiosulfenyl chloride 22 is added to a variety of alkenes, trans-
1,2 adduct 23 is formed in high yield. When 23 is warmed in the presence of a
diene trap, cyclic di- and tetrasulfides 16 and 17 are formed. The tetrasulfide is
the dominant S2 addition product, but can be conveniently converted to the
disulfide (vide infra) by treatment with triphenylphosphine, (Eq. 10). In addition,
when trapped product 16 is warmed with adduct 23, tetrasulfide 17 results.

23

1 6 + 1 7 Eq.10

Ph,P

The most recent example of diatomic sulfur transfer reagents are the
alkoxy disulfides 24.23 These molecules have been known for over 100 years24

but have been given relatively little attention since the work of Thompson in
1965.25 We have prepared a series of them by a modified procedure (Eq. 11) in
isolated yields of ca. 85% (Table 1).

Ar-OH
S0CI0

Et,N
£ A—CH2-O-S-S-O-CH2—<\

Ar= p-x-C6H4 24
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46 DAVID N. HARPP

These compounds can be stored for months at ca. -15 °C with no

measurable decomposition. The nitro derivative 24b is stable in solution to ca.

70 °C at which point it begins to decompose forming elemental sulfur, p-

nitrobenzyl alcohol and/7-nitrobenzaldehyde in high yield.

Table 1

ROSSOR24 X
a
b
c
d
e

H
NO2

Cl
OMe
Me

vielda

88
90
86
62b

82

mD°C
50-51
92-93
45-47
34-36
liquid

a Isolated yields after flash chromatography/recrystallization; 6d was unstable on silica gel

The most likely thermal decomposition mode is displayed in Eq. 12 and

strongly suggests the loss of ^ By using an excess of reagent 24 (usually 24b),

yields of over 75% of trapped disulfide 16a,b are ultimately isolated.23'26 Under

the conditions of this reaction, (toluene, 100-105 °C) when dienes are heated with

elemental sulfur, neither adducts 16 or 17 are detected. This experiment

demonstrates that the trapped products are not likely the result of a transfer of

sulfur fragments by "activated sulfur".27

ArCHO + ArCH2OH + S2 -^^ 16 + 17
H X

24 2 T

1/4 S8

Overall, this technique of S2 transfer appears to be effective and relatively

easy to carry out. Our future work in this area is directed towards finding other

alkoxy disulfides which will decompose at lower temperatures in order to extend

the scope of this chemistry.

Of special interest is the structure of this class of compound 24. Steudel

reported25'3 the first detailed analysis of this class by executing a gas-phase

structure of dimethoxydisulfide (dimethoxydisulfane). 25 by electron diffraction.
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THE SULFUR DIATOMICS 47

We have carried out an x-ray structure analysis of 24b and 24c.28 A few of the

relevant bonding parameters are collected in Table 2; structure 24b is displayed

below.
si

ROSSOR

24b2 8

24c28

2525b

2525c

s-s A
1.968

1.932

1.960

1.972

Table 2
O-S-S-O °

85.6

76.8

91

81.5

o-s-s °
107.3,107.8

108.9

108.2

108.2

Of note is the short sulfur-sulfur bond length in these molecules (1.93 -

1.97 A).28 This is to be compared to the length of a typical disulfide bond of 2.02-

2.06 A 2 9 The S-S bond in diatomic sulfur is 1.89A30 with the shortest known S-S

length of 1.86A in F2S=S.31 Comment is warranted on this "branch-bonded"

form of sulfur-sulfur linkage.

This structure of difluorodisulfane (26) is a curious and uncommon

anomaly since the clarification by Kuczkowski31 over 30 years ago in that two

structural forms exist for "sulfur monofluoride" with the more stable form being

the unusual "branch-bonded" isomer 26b (Eq. 13).

i

Eq. 13?
26a

26b
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48 DAVID N. HARPP

This finding has been amply confirmed by other researchers.32 These
isomers appear to have an appreciable barrier of conversion (23-46 kcal/mol)33

which is sufficient to rationalize their independent existence. A barrier for the
corresponding dichlorodisulfane (C1S-S-C1/C12S=S) rearrangement has been
calculated to be only ca. 3 kcal/mol.33

While there is some evidence for the existence of the branch-bonded
isomer of dichlorodisulfane,34 this species has not been clearly confirmed. Some
evidence for the existence of branch-bonding in sulfur monochloride is found in
the report by Thompson35 in that the reaction of S2CI2 with 1,2 diols appears to
give thionosulfites 27a as opposed to the linear alkoxydisulfide isomer (Eq. 14).

OH
OH

S2CI2
Eq. 14

27a
The structure of these compounds were strongly inferred by their 1H NMR

spectrum suggesting the presence of the thiono functionality. In 1980,36 we
prepared the only confirmed thionosulfite 27b by a curious reaction with a
/nortosulfur transfer reagent (Eq. 15). Here, the X-ray crystal structure shows the
S-S bond length to be quite short at 1.901 A (see Table 2).

\ S

HO OH ss y

\ w _^r-N—, Eq.15

27b
It appears that the tetrachalcogenide linkage prefers to bond as the thiono

isomer (-O-(S=S)-O) when it has an opportunity to be in a 5-membered ring.
The "linear" structure (-O-S-S-O-) appears to be preferred in open-chain
molecules, e.g. 24 and 25. To date, there are no examples of a thionosulfite that
is not cyclic.35 Two theoretical investigations on this interesting question as to
"open-chain" us. "branch-bonded" isomerization have recently been
published.37a-b
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THE SULFUR DIATOMICS 49

A puzzling feature of the 1H NMR spectrum of each of the alkoxy
disulfide derivatives 24, is the presence of a sharp AB quartet. This signal is
unchanged from ca. -70 °C to the decomposition point (e.g. for 24b at ca. 70 °C).
There is no clear precedent for a structure such as 24b to exhibit hindered
rotation; in addition, we have no evidence that there is any equilibrium between
the linear and branched structures. Ab initio calculations have been carried out38

which suggest that a significant rotational barrier is introduced as the S-S bond is
shortened from values of 2.06 A29>39 down to the known values for the alkoxy
disulfides of ca. 1.95A.25b-c'28

This finding would appear to explain the clean AB quartet for 24 at
temperatures of ca. 70 °C which requires a rotational barrier of at least 20
kcal/mol.

We have investigated some of the chemistry of the branch-bonded
molecule 27b to see if it might also serve as a diatomic sulfur transfer species.
When 27b is heated above its melting point (100-101 °C) to ca. 150 °C, an acidic
gas is evolved.36 Preliminary analysis of the residue shows that elemental sulfur
and a variety of olefinic products are formed. In the presence of diene 15a,
trapped disulfide 16a is formed along with a minor amount of tetrasulfide 17a.40

These data suggest that the decomposition mode is as depicted in Eq. 16. It
appears that the relatively rare sulfur oxide S2O2 is formed and disproportionates
to sulfur (via S2) and sulfur dioxide. At present, a variety of symmetrical and
unsymmetrical thionosulfites 28 have been prepared in order to study the scope
of this interesting decomposition reaction.41

n(CH2)

heat 15a
+ S2O2

CH2)n

16 a + 17a

Eq. 16

27b; n = 5
28; n = 0, 4-7
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50 DAVID N. HARPP

Several years ago we were able to show that diatomic sulfur could be
transferred from metallocene pentasulfides 13 by the action of phosphorus
derivative 5.15 Recent results in our lab have shown that diatomic sulfur can be
effectively generated from several other related compounds by simply heating in
DMSO, chlorobenzene or DMF.42 This is perhaps not so surprising in that the
products of these reactions are smaller, stable, sulfur-ring metallocene systems
frequently observed in related derivatives.43 (Eq. 17).

1 ^ * + S ' E q l 7

13a;M = Mo, n = 4 x = variable or
b; M = Ti, n = 5 not reported
c;M = Zr, n = 5

The reactions appear to involve a simple extrusion of a diatomic sulfur
fragment. While there is variation depending on the metallocene polysulfide,
reasonable yields of trapped product (ca. 25-50%) (Table 3) are achieved with
diene 15a as a trap. Given the ease of preparation of the metallocenes 13 b,c, it
suggests that these reagents could be effective for delivering diatomic sulfur. In
control experiments, when elemental sulfur is used as the possible transfer
reagent, no trapping is observed unless the temperatures are high and the
solvents are DMSO or DMF (vide infra). s

13

a

a

a

b

b

b

c

c

c

Solvent

DMSO

DMF

C6H5C1

DMSOb

DMF

C6H5C1

DMSOC

DMF

C6H5C1

Table 3
-SS-%a

29

-

27

9

30

38

-

-

49

-SSSS-%

3
-

2

1

6

4

-_

-

7

a Most values are NMR yields with an internal standard; ^ 13b decomposes rapidly at 125
°C; 13c decomposes at room temperature after ca. 30 min.
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THE SULFUR DIATOMICS 51

Given the long history of "activated sulfur"44 and the ability of the element
to become attached to carbon fragments in the vulcanization of rubber,44 we
have become interested in determining if there was a way to simply use Sg (or
easily made allotropes Sg or S^)45 as a reagent, with minimal or no chemical
"activation" in order to effect a two-sulfur transfer.

It has been reported that cyclic disulfide 16a can be prepared (69% yield)
by heating dienes 15a with elemental sulfur in DMF;46 the authors made no
speculation as to how this process takes place. We have carried out a wide
variety of experiments using various solvents/temperatures with diene 15a in the
presence of elemental sulfur using no "base-activation".42 The results are
summarized in Table 4

Table 4
solvent21

DMSO

DMF

CgHsCl

(EtO)2CH2

Toluene

-SS-%aU6a->

70

54

16

22

<2

-SSSS-%aC17a>

15

26

16

7

<2

15a

15a

15a

15a

15a

a Values are NMR yields with an internal standard.

It is clear that this method of diatomic sulfur transfer can be quite effective
resulting in yields of over SO f̂c26 for the net, two-sulfur transfer. It is not clear
why the amount of trapped product (tetrasulfide 17) varies in the way that it does,
but it should not represent a problem for the preparation of cyclic disulfides
from a synthetic point of view. It is likely that a number of cyclic disulfides of a
generic structure such as 16, have significant biological activity.27
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52 DAVID N. HARPP

A possible mechanistic interpretation to explain this transfer is posed in
Eq. 18. This mechanism (or one similar) may make it be possible to explain at
least some of the many diverse reactions involving elemental sulfur, (particularly
those in polar solvents) that abound in the literature.

Eq. 18

etc.

At the present time, there are over a dozen reagents (including elemental
sulfur itself) that will deliver diatomic sulfur to a diene. The remarkably different
structural types of molecules that perform this transformation suggest that there
will be many more discovered in the future. In addition, previous experiments in
our laboratory have suggested the possibility of the transfer of diatomic
selenium;37d this is presently being explored.47

SULFUR MONOXIDE

The other simple, diatomic molecule containing sulfur is sulfur
monoxide.48 Much less work has been accomplished in this area49 as compared
with diatomic sulfur. Sulfur monoxide was first identified by its UV spectrum in
1929 but is not thermodynamically stable, decomposing in the gas phase.1 The
main method of generation of S=O has been by the pyrolysis of ethylene
episulfoxide (29) at ca. 100 °C.50 (Eq. 19) There are other methods of S=O
production involving diverse structures51; di- tri- and tetraene trapping
experiments have been carried out by a number of workers.52 Yields of trapped
product (sulfoxide 30) are usually ca. 30% and frequently lower.

O

h e a t = { • so

29 30

Eq. 19
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THE SULFUR DIATOMICS 53

The work of Lemal53 focussed primarily on the mechanistic features of this

process although one trapping experiment with isoprene gave a 72% isolated

yield of the corresponding sulfoxide. A recent paper by Glass54 examined the

decomposition of an episulfoxide which collapsed to the olefin with the likely

expulsion of S=O.

In order to further explore this chemistry, a convenient, stable source of

sulfur monoxide was needed. We have found this by use of the hindered

episulfoxides, adamantylideneadamantane thiirane 1-oxide (31) and analog 32.55

When either 31 or 32 is heated in solvents such as toluene, in the presence of a

variety of dienes, S=O is expelled and trapping of it takes place in isolated yields

averaging 75%.

These hindered episulfoxides are easily prepared by m-CPBA oxidation of

the corresponding episulfides (33, 34) in high isolated yield (92%). These

episulfides in turn, are prepared in over 90% yield by simply treating the

corresponding olefins with triphenylmethanesulfenyl chloride (35)22c (Eq. 20).

The episulfoxides are shelf-stable molecules; the crystal structures of 31-34 have

been determined.55'56

Eq.20

31;n = 0
32;n = 1

The decomposition of the episulfoxides is simple and the trapping

effective. Dienes such as 15a,b are added to a solution of episulfoxide in toluene

(3:1 excess of episulfoxide). After refluxing for 24 h under nitrogen, the solvent is

evaporated and the mixture chromatographed using 20% EtOAc in hexanes. The
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54 DAVID N. HARPP

first fraction is the alkene (98% recovery) and the second, the trapped sulfoxide
(ca. 70-80% yield). A variety of dienes, solvents and temperatures were used to
optimize the yields. A selected summary of the results are presented in Table 5.

Table 5
fepisuifoxidet solvent diene sulfoxide^

31

31

32

32

31

31

32

32

32

toluene

xylene

toluene

xylene

toluene

toluene

toluene

EtOAc

toluene

15a

15a

15a

15a

15b

15bb

15b

15bc

15bd

70

27

73

38

80

N.R.

82

N.R.

70

a 3:1 ratio of episulfoxide to dieneyefluxing solvent i
yields after flash chromatography; 1:1 ratio of episv

• for 8-24 hr; isolated
....„ t , , atio of episulfoxide to diene; 80

°C, 10 days; c 1:1 ratio of episulfoxide to diene; 77 °C, 7 days; d 1:3
ratio of episulfoxide to diene; reflux, 12 hr; yield based on episulfoxide.

The mechanism of S = O loss appears to be a diradical process which has
been suggested by virtually all of the mechanistic studies already carried out,
especially those by Baldwin,57 Lemal53 and Glass.54 In an experiment similar to
that of Lemal,53 we reacted episulfoxide 31 with a mixture of 2,4-hexadiene
isomers (c,c; c,t; t,t); an 85% yield of trapped sulfoxide (t,t) 36 was obtained.
This is in contrast to the results of Lemal in that they observed each of the three
possible sulfoxides. However, by ab inltlo calculations,58 the t,t isomer 36
appears to be the most stable of the three possible sulfoxide products. The
formation of this product would still be consistent with a long-lived, triplet,
biradical intermediate which gives full isomerization of the products under our
specific set of reaction conditions. This reaction has been reported to be
sensitive to temperature,54b>c>57 possibly explaining this lack of specificity in our
experiment. H c ^ _ ^ H

H fj CH3

O 36
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