Regio- and Stereoselective Additions of Diphenyldithiophosphinic Acid to *N*-(1-Alkynyl)amides and 1-Alkynyl Sulfides

Shigenari Kanemura, Azusa Kondoh, Hiroto Yasui, Hideki Yorimitsu,* and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510

Received December 12, 2007; E-mail: yori@orgrxn.mbox.media.kyoto-u.ac.jp

Treatment of N-(1-alkynyl)amides and 1-alkynyl sulfides with diphenyldithiophosphinic acid affords (*E*)-ketene N,S-acetals and S,S-acetals, respectively. The addition reactions proceed in syn fashions, which consist of protonation of the electron-rich alkynes and the following nucleophilic addition of diphenyldithiophosphinate anion to the resulting cationic intermediates.

Addition of a hydrogen–sulfur bond across a carbon–carbon triple bond, hydrothiolation of alkyne, is useful for the synthesis of 1-alkenyl sulfide.¹ Hydrothiolation of alkyne under acidic conditions is interesting because of the characteristic Markovnikov regioselectivity. Here, we report hydrothiolation reactions of electron-rich alkynes, N-(1-alkynyl)amides^{2,3} and 1-alkynyl sulfides,^{4,5} with diphenyldithiophosphinic acid. The reactions under acidic conditions afford ketene N,S-acetals (=1-amino-1-thio-1-alkenes) and S,S-acetals (1,1-dithio-1-alkenes), which are useful building blocks for organic synthesis.⁶

Results and Discussion

Addition to *N*-(1-Alkynyl)amides.⁷ N-Phenylethynyl-Nmethyl-p-toluenesulfonamide (1a) was treated with diphenyldithiophosphinic acid (2) in 1,2-dimethoxyethane (DME) at room temperature for 1 h to provide (E)-1-[methyl(p-tolylsulfonyl)amino]-2-phenylethenyl diphenyldithiophosphinate (3a) in 87% yield as the sole product (Table 1, Entry 1). The reaction proceeded in a syn fashion with perfect regio- and stereoselectivity.8 A variety of ynamides underwent the hydrothiolation. The reaction of N-1-propynylamide 1b yielded 3b in good yield (Entry 2). The stereochemistry of the reaction was confirmed by analyzing nuclear Overhauser effect. Irradiation of the methyl group on the nitrogen of 3b enhanced the intensity of the signal for the methyl group of the propenyl moiety (12%). The steric as well as electronic factors of the aryl groups attached to the carbon-carbon triple bonds were moderate (Entries 3-6). The reactions of trimethylsilyl-substituted ynamide 1g and terminal alkyne 1h also furnished the desired products 3g and 3h (Entries 7 and 8). Not only p-toluenesulfonamides but also p-nitrobenzenesulfonamide 1j reacted with 2 smoothly to afford the corresponding product 3j in 97% isolated yield (Entry 10). The choice of the solvent is not an important factor. For instance, the reaction of 1a with 2 proceeded in DME, ethanol, dichloromethane, and hexane to afford 3a in 98%, 97%, 91%, and 95% NMR yields, respectively.

The reaction of deuterium-labeled ynamide 1h-d yielded a mixture of adducts 3h, 3h-d, and $3h-d_2$ in 93% combined yield in a ratio of 18:75:7 (Scheme 1). Monodeuterated 3h-d was

 Table 1. Hydrothiolation Reactions of Ynamides 1 with Diphenyldithiophosphinic Acid (2)

Entry	1	R ¹	R ²	Ar	3	Yield/% ^{a)}
1	1a	Ph	Me	<i>p</i> -MeC ₆ H ₄	3a	87 (98) ^{b)}
2	1b	Me	Me	p-MeC ₆ H ₄	3b	76
3	1c	<i>p</i> -MeC ₆ H ₄	Me	p-MeC ₆ H ₄	3c	91
4	1d	o-MeC ₆ H ₄	Me	p-MeC ₆ H ₄	3d	97
5	1e	p-ClC ₆ H ₄	Me	p-MeC ₆ H ₄	3e	88
6	1f	p-AcC ₆ H ₄	Me	p-MeC ₆ H ₄	3f	97
7	1g	Me ₃ Si	Me	p-MeC ₆ H ₄	3g	63 ^{c)}
8	1h	Н	Me	p-MeC ₆ H ₄	3h	86
9	1i	Ph	$CH_2 = CHCH_2$	p-MeC ₆ H ₄	3i	95
10	1j	Ph	Me	p-NO ₂ C ₆ H ₄	3j	97

 a) Isolated yields by silica gel column chromatography unless otherwise specified.
 b) NMR yield based on ³¹PNMR analysis.
 c) Isolated yield after recrystallization.

Scheme 1. Reaction of deuterated ynamide.

Scheme 2. Plausible reaction mechanism for hydrothiolation.

Figure 1. Stereoselective addition of 2⁻ to ketene iminium intermediate.

obtained as a 1:1 mixture of the E and Z isomers, which suggests a stepwise mechanism for the hydrothiolation as outlined in Scheme 2. Protonation of **1h**-*d* with 2 would generate a ketene iminium intermediate **4h**-*d* and diphenyldithiophosphinate anion 2^- . The anion 2^- would then attack the intermediate **4h**-*d* to afford (*E*)- and (*Z*)-**3h**-*d*. Instead of the addition of 2^- to **4h**-*d*, abstraction of the deuterium in **4h**-*d* by 2^- would generate **1h** and **2**-*d*. The generation of **1h** and **2**-*d* resulted in the formations of unlabeled **3h** and **3h**-*d*₂, respectively.

The selective formation of E isomers from 1a-1g, 1i, and 1j is rationalized as shown in Figure 1. Dithiophosphinate anion 2^- would approach a ketene iminium intermediate 4 from the same side of the olefinic hydrogen to avoid steric repulsion between R^1 and 2^- .

We found that the reaction of ynamide 1a or 1b with diphenylphosphine and sulfur in the presence of a catalytic amount of butyllithium in DME at 25 °C afforded 3a or 3b, respectively, in high yield (eq 1). Diphenyldithiophosphinic acid (**2**) would be generated in situ under the reaction conditions. It was reported that reaction of Ph₂PH and 2 molar amount of sulfur in refluxing benzene afforded Ph₂P(=S)SH.⁹ Catalytic amounts of butyllithium would accelerate the formation of Ph₂P(=S)SH by generating Ph₂PLi in situ. Indeed, treatment of diphenylphosphine with a catalytic amount of butyllithium in the presence of sulfur in DME at 25 °C for 1 h afforded diphenyldithiophosphinic acid (**2**) in 56% NMR yield (³¹P NMR: δ 53.78 in CDCl₃), after acid–base extraction.

$$R-C \equiv C-N, Me \xrightarrow{nBuLi (0.1 mol. amt.)} HPPh_2 (1.5 mol. amt.) \\ Me \xrightarrow{S (3.0 mol. amt.)} Me \xrightarrow{S-PPh_2} R \xrightarrow{N-Ts} (1) \\ R = Ph (1a) \\ R = Me (1b) \\ R = Ph (3a) : 92\% (2 h) \\ R = Me (3b) : 78\% (1 h) \\$$

Transformation of the ketene *N*,*S*-acetals **3** was investigated to show the utility of **3**. The reaction of **3a** with 4.0 molar amount of *t*-butyllithium in ether at 0 °C provided thioimidate **5** in high yield (Scheme 3).¹⁰ Attack of the sulfur atom attached to the olefinic carbon of **3a** by *t*-butyllithium could afford **6**.¹¹ An additional equivalent of *t*-butyllithium could then add to **6** to yield sulfur-stabilized anion **7**. Subsequent elimination of lithium *p*-toluenesulfinate would furnish thioimidate **5**. Hydrolysis of thioimidate **5** provided *t*-butyl-substituted thioamide **8** in 92% yield. Attempts to obtain **6** in high yield failed. For instance, treatment of **3c** with 1.2 molar amount of *t*-butyllithium in THF at -40 °C afforded **6** in only 34% NMR yield. Unfortunately, the use of other organolithium or -magnesium compounds instead of *t*-butyllithium gave complex mixtures.

When ynamide **1a** was treated with thiobenzoic acid (**9**) instead of **2** under conditions that were otherwise the same, ketene *N*,*O*-acetal **10** was obtained in 51% yield (Scheme 4). Reaction of **10** with butylmagnesium bromide in THF afforded amide **11**, which suggests that the adduct **10** was not *S*-alkenyl thioester but *O*-alkenyl thioester. On the other hand, treatment of ynamide **1a** with thiols such as benzenethiol and 1-dodecanethiol resulted in no hydrothiolation reactions, which clearly shows the importance of the acidity of the reagents.¹² Hydrothiolation with aromatic dithiocarboxylic acid could not be performed due to difficulty in preparing and purifying dithiocarboxylic acid.

Scheme 3. Transformation of 3.

Scheme 4. Addition of thiobenzoic acid to 1a.

Addition to 1-Alkynyl Sulfides. The results of the hydrothiolation of 1-alkynyl sulfides 12 with 2 are summarized in Table 2. The scope of 1-alkynyl sulfides is wide enough to afford a variety of ketene S,S-acetals 13 in excellent yield. The syn addition predominated to yield E isomers as major products. The E configuration was assigned by X-ray crystallographic analysis of 13b. However, the reactions of 12 showed poorer stereoselectivity than those of N-1-alkynylamide 1. The SR^2 groups are sterically less hindered than the NR²(SO₂Ar) groups, which would partly allow dithiophosphinate anion 2⁻ to attack the cationic thicketene intermediate from the same side of the R¹ group. The reaction of dodecyl ethynyl sulfide (12j) provided the corresponding product 13j in 57% yield, along with dodecyl dithioacetate (CH₃C(=S)SⁿC₁₂H₂₅, 29%), which would be formed by hydrolysis of 13j (Entry 10). Solvent effect on the reaction is almost negligible, and the reaction proceeded as well in solvents such as DME and dichloromethane.

Treatment of **13a** with trifluoroacetic acid in dichloromethane afforded the corresponding dithioester **14** in high yield (eq 2).

$$\begin{array}{c}
 S = & CF_{3}CO_{2}H \\
 S = & PPh_{2} \\
 Ph & S^{n}C_{12}H_{25} \\
 13a (E/Z = 97:3) \\
\end{array} \xrightarrow{(5.0 \text{ mol. amt.})} & Ph & S^{n}C_{12}H_{25} \\
 \hline
 CH_{2}Cl_{2}, 25 \ ^{\circ}C, 4h \\
 Ph & S^{n}C_{12}H_{25} \\
 14 \ 85\% \\
\end{array}$$
(2)

Organolithium reagents reacted with 13a at the diphenylthiophosphinylated sulfur atom, leading to substitution reactions.¹¹ The reactions of 13a with phenyllithium and butyllithium yielded 15a and 15b, respectively. Although the reactions proceeded with retention of configuration with 13a, the products 15a and 15b readily underwent isomerization on silica gel upon chromatographic purification. To avoid the isomerization, 15a was chromatographed on neutral silica gel with hexane/ethyl acetate/triethylamine = 93:2:5 as an eluent. The isomerization of 15b was inevitable with various eluents tested.

$$\begin{array}{c} \begin{array}{c} S \\ H \\ S^{-} PPh_{2} \\ Ph \\ S^{n}C_{12}H_{25} \\ \end{array} \begin{array}{c} \begin{array}{c} (1.0 \text{ mol. amt.}) \\ THF, 0 \ ^{\circ}C, 30 \text{ min} \\ \text{then purification} \\ \text{on silica gel} \end{array} \begin{array}{c} H \\ SR \\ Ph \\ S^{n}C_{12}H_{25} \\ \end{array} \begin{array}{c} SR \\ Ph \\ S^{n}C_{12}H_{25} \\ S^{n}C_{12}H_{25} \\ \end{array} \begin{array}{c} (3) \\ 67\%, E/Z = 95:5 \\ \end{array} \begin{array}{c} 15b \ (R = ^{n}Bu) \\ 67\%, E/Z = 32:68 \end{array}$$

 Table 2. Hydrothiolation of 1-Alkynyl Sulfides 12 with

 Diphenyldithiophosphinic Acid (2)

·C≡C	-SR ² (S HS ⁻ / _/ Ph Ph 2 (1.2 mol. amt	S-PPh ₂		
12			,	R' SR	13
12	\mathbb{R}^1	\mathbb{R}^2	13	Yield/% ^{a)}	E/Z
12a	Ph	${}^{n}C_{12}H_{25}$	13a	96	97:3
12b	Ph	<i>p</i> -MeC ₆ H ₄	13b	85	100:0
12c	${}^{n}C_{6}H_{13}$	${}^{n}C_{12}H_{25}$	13c	92	83:17
12d	${}^{n}C_{6}H_{13}$	<i>p</i> -MeC ₆ H ₄	13d	86	97:3
12e	p-MeOC ₆ H ₄	${}^{n}C_{12}H_{25}$	13e	91	99:1
12f	o-MeOC ₆ H ₄	${}^{n}C_{12}H_{25}$	13f	83 ^{b)}	98:2
12g	p-CF ₃ C ₆ H ₄	${}^{n}C_{12}H_{25}$	13g	86	95:5
12h	${}^{c}C_{6}H_{11}$	${}^{n}C_{12}H_{25}$	13h	92	94:6
12i	${}^{t}C_{4}H_{9}$	${}^{n}C_{12}H_{25}$	13i	97	97:3
12j	Н	${}^{n}C_{12}H_{25}$	13j	57	
	C≡C 12 12a 12b 12c 12d 12c 12f 12g 12h 12i 12j	$\begin{array}{c} C \equiv C - SR^2 \\ 12 \\ \hline 12 \\ \hline 12 \\ \hline 12a \\ Ph \\ 12b \\ Ph \\ 12c \\ {}^{n}C_{6}H_{13} \\ 12d \\ {}^{n}C_{6}H_{13} \\ 12d \\ {}^{n}C_{6}H_{13} \\ 12d \\ {}^{n}C_{6}H_{13} \\ 12d \\ {}^{n}C_{6}H_{13} \\ 12f \\ {}^{o}-MeOC_{6}H_{4} \\ 12g \\ {}^{o}-CF_{3}C_{6}H_{4} \\ 12h \\ {}^{c}C_{6}H_{11} \\ 12i \\ {}^{c}C_{4}H_{9} \\ 12j \\ H \end{array}$	$\begin{array}{c} S \\ HS^{/}_{Ph} Ph \\ 2 \\ HS^{/}_{Ph} Ph \\ 2 \\ (1.2 \text{ mol. amt}) \\ ethanol, 25 ^{\circ}C, 8 \\ \hline 12 \\ 12 \\ \hline 12 \\ 12 \\ Ph \\ 12 \\ Ph \\ P-MeC_6H_4 \\ P-MeC_12H_{25} \\ P-C_12H_{25} $	$\begin{array}{c c} S \\ HS \\ Ph \\ Ph \\ 2 \\ (1.2 \text{ mol. amt.}) \\ \hline \\ 12 \\ Ph \\ Ph \\ P-MeC_{0}H_{4} \\ 13 \\ \hline \\ 12 \\ Ph \\ P-MeC_{6}H_{4} \\ 13 \\ P-MeC_{6}H_{4} \\ 13 \\ 12 \\ P-MeOC_{6}H_{4} \\ P-MeC_{6}H_{4} \\ 13 \\ 12 \\ P-MeOC_{6}H_{4} \\ P-MeC_{6}H_{4} \\ 13 \\ 12 \\ P-MeOC_{6}H_{4} \\ P-C_{12}H_{25} \\ P-C_{12}C_{12} \\ $	$\begin{array}{c} S \\ HS_{Ph}^{P} Ph \\ Ph 2 \\ S \\ 12 \end{array} \xrightarrow{(1.2 \text{ mol. amt.})} ethanol, 25 ^{\circ}\text{C}, 5 h \\ R^{1} \\ S \\ R^{2} \\ \hline 12 \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^{2$

a) Isolated yields by silica gel column chromatography unless otherwise noted. b) Isolated yield obtained by using gel permeation chromatography.

Conclusion

We examined hydrothiolation reactions of ynamides and 1alkynyl sulfides with diphenyldithiophosphinic acid. The reaction proved to proceed in *syn* fashions, yielding (*E*)-ketene *N*,*S*-acetals and *S*,*S*-acetals of synthetic use. The reactions begin with protonation of the electron-rich alkynes followed by nucleophilic addition of diphenyldithiophosphinate anion.

Experimental

¹H NMR (500 MHz) and ¹³C NMR (125.7 MHz) General. spectra were taken on a Varian UNITY INOVA 500 spectrometer and were obtained in CDCl₃ with tetramethylsilane as an internal standard. ³¹PNMR (121.5 MHz) spectra were taken on a Varian GEMINI 300 spectrometer and were obtained in CDCl₃ with 85% H₃PO₄ solution as an external standard. NMR yields were determined by fine ³¹P NMR spectra with (MeO)₃P=O as an internal standard. The first delay of ³¹P NMR measurements was set for 15 s to make integrals for signals accurate. IR spectra were taken on a SHIMADZU FTIR-8200PC spectrometer. Mass spectra were determined on a JEOL Mstation 700 spectrometer. TLC analyses were performed on commercial glass plates bearing a 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Wakogel 200 mesh) was used for column chromatography unless otherwise noted. Purification of 15 was performed on Silica Gel 60 N (spherical, neutral), which is available from Kanto Chemical Co., Inc., by using hexane/ethyl acetate/triethylamine = 93:2:5 as an eluent. Gel permeation chromatography was performed by using LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, toluene, 3.8 mL min⁻¹, UV and RI detectors). Elemental analyses were carried out at the Elemental Analysis Center of Kyoto University.

Material. Materials obtained from commercial suppliers were used without further purification. Ynamide **1g** was prepared by a procedure described in the literature.¹³ Ynamide **1h** and **1h**-*d* were prepared by treatment of **1g** with an excess amount of potassium carbonate in methanol or methanol- d_1 . Preparation of other yna-

mides **1a–1f**, **1i**, and **1j** were performed according to the literature.¹⁴ Diphenyldithiophosphinic acid (**2**) was easily prepared from benzene and P_4S_{10} in the presence of $AlCl_3$.¹⁵ 1-Alkynyl sulfides **12** were prepared according to the procedure described below. Butyllithium was purchased from Nacalai Tesque. Phenyllithium and *t*-butyllithium were obtained from Kanto Chemical.

General Procedure for the Hydrothiolation Reactions of Ynamides with Diphenyldithiophosphinic Acid (Table 1). Ynamide 1h (0.11 g, 0.50 mmol) was placed in a 30-mL reaction flask under argon. A solution of 2 (0.15 g, 0.60 mmol in 5 mL of DME) was added to the reaction flask at room temperature. The mixture was stirred for 1 h at room temperature. The resulting mixture was concentrated in vacuo. ³¹P NMR analysis with trimethyl phosphate as an internal standard revealed formation of the corresponding product 3h in 91% yield. Purification of the crude product by silica gel column chromatography provided 3h (0.20 g, 0.43 mmol) in 86% yield as white crystal.

Hydrothiolation of Ynamides with Diphenylphosphine and Sulfur in the Presence of a Catalytic Amount of Butyllithium The reaction of ynamide 1b is representative. DME (eq 1). (3 mL), butyllithium (1.6 mol L⁻¹, 31 µL, 0.050 mmol), and freshly distilled diphenylphosphine (0.13 mL, 0.75 mmol) were sequentially added to a 50-mL reaction flask under argon at room temperature. After the reaction mixture was stirred for 10 min at room temperature, S₈ (0.05 g) and ynamides **1b** (0.11 g, 0.5 mmol, dissolved in 3 mL of DME) were successively added. The resulting mixture was stirred at room temperature for 1 h, and saturated NH₄Cl aq (2 mL) was added. The organic compounds were extracted with ethyl acetate twice. The combined organic part was washed with brine and dried over anhydrous sodium sulfate. After evaporation, the resulting residue was purified by silica gel column chromatography to afford **3b** (185 mg, 0.39 mmol) in 78% vield.

Reaction of 3a with t-Butyllithium (Scheme 3). Ketene *N*,*S*-acetal **3a** (0.16 g, 0.30 mmol) was placed in a 30-mL reaction flask under argon. Diethyl ether (5 mL) and *t*-butyllithium (1.58 mol L⁻¹, 0.76 mL, 1.2 mmol) were sequentially added at 0 °C. After being stirred for 1 h at 0 °C, water (5 mL) was added. The organic compounds were extracted with ethyl acetate twice. The combined organic part was washed with brine and dried over anhydrous sodium sulfate. After evaporation, the resulting residue was purified by silica gel column chromatography to afford thioimidate **5** (0.067 g, 0.24 mmol) in 80% yield.

Hydrolysis of Thioimidate (Scheme 3). Thioimidate 5 (0.065 g, 0.23 mmol) was placed in a 30-mL reaction flask under argon. THF (3 mL) and hydrochloric acid (1.0 mol L⁻¹, 3 mL) were sequentially added at ambient temperature. After the mixture was stirred for 1 h at ambient temperature, water (5 mL) was added. The organic compounds were extracted with ethyl acetate twice. The combined organic part was washed with brine and dried over anhydrous sodium sulfate. After evaporation, the resulting residue was purified by silica gel column chromatography to afford thioamide **8** (0.048 g, 0.22 mmol) in 92% yield.

Synthesis of 1-Alkynyl Sulfides. The synthesis of dodecyl phenylethynyl sulfide (12a) is representative. THF (15 mL) was placed in a 50-mL reaction flask under argon. At 0 °C, phenylacetylene (0.99 mL, 9.0 mmol) and butyllithium (1.6 mol L⁻¹ hexane solution, 5.2 mL, 8.5 mmol) were sequentially added. After the mixture was stirred for 30 min at 0 °C, didodecyl disulfide (3.2 g, 8.0 mmol) was added. The mixture was stirred for 1 h at room temperature. 2-Bromoethanol (0.71 mL, 10 mmol) was then added,¹⁶ and the resulting mixture was stirred for 30 min. The

mixture was poured into water (20 mL), and the product was extracted with ethyl acetate (20 mL \times 3). The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Purification of the residual oil on silica gel afforded **12a** (1.8 g, 6.1 mmol, 76%) as a white solid.

Hydrothiolation of 1-Alkynyl Sulfides 12 (Table 2). The reaction of 12a with 2 is representative. Ethanol (3.0 mL), 12a (0.15 g, 0.50 mmol), and 2 (0.15 g, 0.60 mmol) were added to a 20-mL reaction flask under an argon atmosphere. The mixture was stirred for 5 h at 25 °C, and concentrated in vacuo. Silica gel column purification afforded 13a (0.27 g, 0.48 mmol, 96%) as a pale yellow oil.

Reaction of *S*,*S*-Acetal 13a with Trifluoroacetic Acid (eq 2). Dichloromethane (2.0 mL), 13a (0.11 g, 0.20 mmol), and trifluoroacetic acid (0.074 mL, 1.0 mmol) were added to a 20-mL reaction flask under an argon atmosphere. The mixture was stirred for 4 h at 25 °C, and concentrated in vacuo. Chromatographic purification on silica gel afforded 14 (0.058 g, 0.17 mmol, 85%) as a pale yellow oil.

Reaction of 13a with Organolithium Reagent (eq 3). Ketene *S*,*S*-acetal **13a** (0.28 g, 0.50 mmol) and THF (3.0 mL) were placed in a 20-mL reaction flask under argon. Phenyllithium (1.1 mol L⁻¹ hexane–cyclohexane solution, 0.44 mL, 0.50 mmol) was added to the solution at 0 °C. After being stirred at 0 °C for 30 min, the mixture was poured into water (10 mL). The product was extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over anhydrous sodium sulfate. After evaporation, the crude oil was purified by silica gel column chromatography to afford **15a** (0.14 g, 0.34 mmol) in 67% yield.

Characterization Data. The spectral data of **1g**,¹³ **1i**,¹⁴ **12b**,¹⁷ and **12d**¹⁸ are identical to those found in the literature.

N-Methyl-*N*-phenylethynyl-*p*-toluenesulfonamide (1a): IR (nujol) 2924, 2233, 1595, 1365, 1164, 764, 676, 546 cm⁻¹; ¹H NMR (CDCl₃) δ 2.46 (s, 3H), 3.15 (s, 3H), 7.27–7.31 (m, 3H), 7.34–7.38 (m, 4H), 7.83–7.85 (m, 2H); ¹³C NMR (CDCl₃) δ 21.85, 39.49, 69.19, 84.11, 122.87, 128.02, 128.04, 128.44, 129.98, 131.57, 133.40, 144.97; Anal. Found: C, 67.07; H, 5.25%. Calcd for C₁₆H₁₅NO₂S: C, 67.34; H, 5.30%; mp 85–86 °C.

N-Methyl-*N*-1-propynyl-*p*-toluenesulfonamide (1b): IR (nujol) 2924, 2855, 2265, 1456, 1355, 1168, 1158, 1042, 816, 677, 566, 545 cm⁻¹; ¹H NMR (CDCl₃) δ 1.88 (s, 3H), 2.46 (s, 3H), 3.01 (s, 3H), 7.34–7.39 (m, 2H), 7.76–7.81 (m, 2H); ¹³C NMR (CDCl₃) δ 3.39, 21.83, 39.43, 64.26, 73.90, 127.97, 129.87, 133.49, 144.64; Anal. Found: C, 59.16; H, 5.82%. Calcd for C₁₁H₁₃NO₂S: C, 59.17; H, 5.87%; mp 99–100 °C.

N-Methyl-*N*-*p*-tolylethynyl-*p*-toluenesulfonamide (1c): IR (nujol) 2922, 2854, 2232, 1366, 1166, 728, 664, 567, 543 cm⁻¹; ¹H NMR (CDCl₃) δ 2.35 (s, 3H), 2.48 (s, 3H), 3.16 (s, 3H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.24–7.32 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.60, 21.83, 39.53, 69.15, 83.39, 119.69, 128.05, 129.20, 129.94, 131.66, 133.40, 138.21, 144.90; Anal. Found: C, 68.20; H, 5.60%. Calcd for C₁₇H₁₇NO₂S: C, 68.20; H, 5.72%; mp 73–74 °C.

N-Methyl-*N*-*o*-tolylethynyl-*p*-toluenesulfonamide (1d): IR (neat) 2923, 2235, 1597, 1457, 1367, 1189, 1169, 962, 811, 758, 735, 676, 547 cm⁻¹; ¹H NMR (CDCl₃) δ 2.37 (s, 3H), 2.46 (s, 3H), 3.18 (s, 3H), 7.08–7.14 (m, 1H), 7.17 (dd, J = 5.0, 1.5Hz, 2H), 7.31 (d, J = 7.5 Hz, 1H), 7.34–7.38 (m, 2H), 7.82–7.87 (m, 2H); ¹³C NMR (CDCl₃) δ 20.88, 21.93, 39.64, 68.21, 87.91, 122.70, 125.66, 127.92, 128.02, 129.56, 129.99, 131.55, 133.59, 139.91, 144.95; HRMS(EI) Found: 299.0986. Calcd for C₁₇H₁₇-NO₂S: 299.0980 [M⁺]. *N-p*-Chlorophenylethynyl-*N*-methyl-*p*-toluenesulfonamide (1e): IR (nujol) 2925, 2855, 2239, 1362, 1163, 1087, 960, 827, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 2.46 (s, 3H), 3.15 (s, 3H), 7.24– 7.30 (m, 4H), 7.36–7.40 (m, 2H), 7.80–7.85 (m, 2H); ¹³C NMR (CDCl₃) δ 21.83, 39.38, 68.28, 85.00, 121.41, 127.99, 128.76, 130.02, 132.73, 133.41, 133.96, 145.10; Anal. Found: C, 59.81; H, 4.45%. Calcd for C₁₆H₁₄NO₂SCI: C, 60.09; H, 4.41%; mp 95–97 °C.

N-p-Acetylphenylethynyl-*N*-methyl-*p*-toluenesulfonamide (1f): IR (nujol) 2925, 2232, 1676, 1603, 1370, 1352, 1269, 1177, 1168, 714, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 2.47 (s, 3H), 2.59 (s, 3H), 3.18 (s, 3H), 7.36–7.44 (m, 4H), 7.82–7.86 (m, 2H), 7.86–7.91 (m, 2H); ¹³C NMR (CDCl₃) δ 21.87, 26.75, 39.38, 69.33, 87.70, 128.00, 128.13, 128.44, 130.11, 130.96, 133.44, 135.81, 145.25, 197.44; Anal. Found: C, 65.87; H, 5.39%. Calcd for C₁₈-H₁₇NO₃S: C, 66.03; H, 5.23%; mp 131–133 °C.

N-Ethynyl-*N*-methyl-*p*-toluenesulfonamide (1h): IR (nujol) 2923, 2360, 2137, 1597, 1359, 1172, 960, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 2.46 (s, 3H), 2.68 (s, 1H), 3.06 (s, 3H), 7.37 (d, J = 7.5 Hz, 2H), 7.80 (d, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.84, 39.01, 57.63, 77.76, 128.00, 130.01, 133.41, 145.09; Anal. Found: C, 57.35; H, 5.47%. Calcd for C₁₀H₁₁NO₂S: C, 57.40; H, 5.30%; mp 75–76 °C.

N-Methyl-*N*-phenylethynyl-*p*-nitrobenzenesulfonamide (1j): IR (nujol) 2953, 2924, 2854, 2242, 1607, 1531, 1446, 1371, 1347, 1171, 769, 759, 598 cm⁻¹; ¹H NMR (CDCl₃) δ 3.23 (s, 3H), 7.28– 7.40 (m, 5H), 8.15 (d, J = 8.5 Hz, 2H), 8.44 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 39.80, 69.99, 82.63, 122.04, 124.66, 128.62, 128.66, 129.22, 131.82, 141.82, 150.94; Anal. Found: C, 57.04; H, 3.88%. Calcd for C₁₅H₁₂N₂O₄S: C, 56.95; H, 3.82%; mp 150–153 °C.

N-Deuterioethynyl-*N*-methyl-*p*-toluenesulfonamide (1h-*d*): IR (nujol) 2923, 2580, 2000, 1596, 1358, 1171, 955, 689, 544 cm⁻¹; ¹H NMR (CDCl₃) δ 2.45 (s, 3H), 3.05 (s, 3H), 7.34–7.49 (m, 2H), 7.78–7.82 (m, 2H); ¹³C NMR (CD₂Cl₂) δ 21.94, 39.45, 57.48 (t, *J* = 40.1 Hz), 77.74 (t, *J* = 9.0 Hz), 128.30, 130.42, 133.65, 145.82; Anal. Found: C, 57.05; H + D, 5.61%. Calcd for C₁₀H₁₀DNO₂S: C, 57.12; H + D, 5.75%; mp 74–76 °C.

(*E*)-1-[Methyl(*p*-tolylsulfonyl)amino]-2-phenylethenyl Diphenyldithiophosphinate (3a): IR (nujol) 2924, 2855, 1437, 1351, 1163, 693, 654 cm⁻¹; ¹H NMR (CDCl₃) δ 2.44 (s, 3H), 2.56 (s, 3H), 6.80 (d, *J* = 3.5 Hz, 1H), 7.22–7.54 (m, 13H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.73–7.89 (m, 4H); ¹³C NMR (CDCl₃) δ 21.77, 35.34, 125.73 (d, *J* = 8.1 Hz), 128.44, 128.51, 128.62 (d, *J* = 12.9 Hz), 129.31, 129.41 (d, *J* = 0.9 Hz), 129.54, 131.75 (d, *J* = 11.0 Hz), 132.11 (d, *J* = 2.9 Hz), 133.91 (d, *J* = 2.9 Hz), 134.19 (d, *J* = 83.1 Hz), 135.09, 143.98, 146.65 (d, *J* = 7.1 Hz); ³¹P NMR (CDCl₃) δ 65.09; Anal. Found: C, 62.78; H, 4.93%. Calcd for C₂₈H₂₆NO₂PS₃: C, 62.78; H, 4.89%; mp 128–129 °C.

(*E*)-1-[Methyl(*p*-tolylsulfonyl)amino]-1-propenyl Diphenyldithiophosphinate (3b): IR (neat) 3055, 2923, 1597, 1436, 1351, 1167, 1089, 957, 815, 720, 675, 654, 609 cm⁻¹; ¹H NMR (CDCl₃) δ 1.75 (dd, *J* = 7.0, 4.5 Hz, 3H), 2.45 (s, 3H), 2.54 (s, 3H), 6.13 (dq, *J* = 7.0, 3.5 Hz, 1H), 7.29–7.35 (m, 2H), 7.42 (br, 4H), 7.46–7.53 (m, 2H), 7.66–7.72 (m, 2H), 7.78–7.86 (m, 4H); ¹³C NMR (CDCl₃) δ 16.07 (d, *J* = 2.4 Hz), 21.79, 35.78, 126.47 (d, *J* = 7.6 Hz), 128.16, 128.69 (d, *J* = 13.4 Hz), 129.77, 131.87 (br), 132.11 (d, *J* = 3.4 Hz), 134.44 (d, *J* = 84.5 Hz), 135.58, 143.91, 147.52 (d, *J* = 7.1 Hz); ³¹P NMR (CDCl₃) δ 64.47; Anal. Found: C, 58.39; H, 5.12%. Calcd for C₂₃H₂₄NO₂PS₃: C, 58.33; H, 5.11%; mp 83–84 °C.

(E)-1-[Methyl(p-tolylsulfonyl)amino]-2-p-tolylethenyl Di-

phenyldithiophosphinate (3c): IR (nujol) 2923, 2854, 1433, 1335, 1160, 1095, 975, 815, 686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.33 (s, 3H), 2.46 (s, 3H), 2.57 (s, 3H), 6.76 (d, J = 3.5 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 7.26–7.58 (m, 6H), 7.28 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.69–7.96 (m, 6H); ¹³C NMR (CDCl₃) δ 21.59, 21.79, 35.31, 124.52 (d, J = 8.1 Hz), 128.58, 128.69 (d, J = 13.4 Hz), 129.35, 129.57 (d, J = 1.4 Hz), 129.60, 131.27 (d, J = 2.9 Hz), 131.90 (d, J = 11.0 Hz), 132.13 (d, J = 3.4 Hz), 134.44 (d, J = 83.1 Hz), 135.35, 139.74, 143.96, 147.02 (d, J = 7.1 Hz); ³¹P NMR (CDCl₃) δ 64.87; Anal. Found: C, 63.19; H, 5.01%. Calcd for C₂₉H₂₈NO₂PS₃: C, 63.36; H, 5.13%; mp 144–146 °C.

(*E*)-1-[Methyl(*p*-tolylsulfonyl)amino]-2-*o*-tolylethenyl Diphenyldithiophosphinate (3d): IR (nujol) 2924, 2854, 1436, 1356, 1167, 1156, 1101, 723, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 2.11 (s, 3H), 2.39 (s, 3H), 2.57 (s, 3H), 6.90 (s, 1H), 7.02–7.26 (m, 5H), 7.30–7.66 (m, 9H), 7.78–8.02 (m, 4H); ¹³C NMR (CDCl₃) δ 20.21, 21.68, 35.83, 125.97, 127.15, 128.33, 128.46 (d, *J* = 1.4 Hz), 128.72 (d, *J* = 12.9 Hz), 128.87, 129.43, 130.02, 131.90 (d, *J* = 11.0 Hz), 132.16 (d, *J* = 2.9 Hz), 133.42, 134.21 (d, *J* = 83.5 Hz), 135.41, 137.09, 143.78, 143.84; ³¹P NMR (CDCl₃) δ 64.35; Anal. Found: C, 63.54; H, 5.27%. Calcd for C₂₉H₂₈NO₂-PS₃: C, 63.36; H, 5.13%; mp 165–167 °C.

(*E*)-2-*p*-Chlorophenyl-1-[methyl(*p*-tolylsulfonyl)amino]ethenyl Diphenyldithiophosphinate (3e): IR (nujol) 2924, 2855, 1437, 1351, 1162, 1090, 971, 815, 689 cm⁻¹; ¹HNMR (CDCl₃) δ 2.45 (s, 3H), 2.57 (s, 3H), 6.73 (d, J = 3.0 Hz, 1H), 7.22–7.58 (m, 12H), 7.67 (d, J = 8.5 Hz, 2H), 7.72–7.90 (m, 4H); ¹³C NMR (CDCl₃) δ 21.78, 35.33, 126.70 (d, J = 8.6 Hz), 128.51, 128.70, 128.81, 128.83, 129.70, 130.75, 131.88 (d, J = 10.9 Hz), 132.24 (d, J = 3.4 Hz), 132.55 (d, J = 2.9 Hz), 134.27 (d, J = 83.1 Hz), 135.12, 144.22, 145.21 (d, J = 7.1 Hz); ³¹P NMR (CDCl₃) δ 65.48; Anal. Found: C, 59.11; H, 4.43%. Calcd for C₂₈H₂₅Cl-NO₂PS₃: C, 58.99; H, 4.42%; mp 109–111 °C.

(*E*)-2-*p*-Acetylphenyl-1-[methyl(*p*-tolylsulfonyl)amino]ethenyl Diphenyldithiophosphinate (3f): IR (nujol) 2923, 2854, 1682, 1347, 1266, 1162, 973, 719, 682 cm⁻¹; ¹H NMR (CDCl₃) δ 2.45 (s, 3H), 2.58 (s, 3H), 2.60 (s, 3H), 6.80 (d, *J* = 3.0 Hz, 1H), 7.24–7.30 (m, 2H), 7.32–7.60 (m, 8H), 7.66–7.70 (m, 2H), 7.74– 7.92 (m, 6H); ¹³C NMR (CDCl₃) δ 21.81, 26.82, 35.44, 128.53, 128.62, 128.68, 128.81 (d, *J* = 13.3 Hz), 129.56 (d, *J* = 1.4 Hz), 129.74, 131.92 (d, *J* = 11.0 Hz), 132.34 (d, *J* = 2.9 Hz), 134.14 (d, *J* = 83.5 Hz), 134.97, 137.10, 138.60 (d, *J* = 2.9 Hz), 144.30, 144.91 (d, *J* = 7.3 Hz), 197.60; ³¹P NMR (CDCl₃) δ 65.70; Anal. Found: C, 62.25; H, 4.86%. Calcd for C₃₀H₂₈NO₃PS₃: C, 62.37; H, 4.89%; mp 132–134 °C.

(*E*)-1-[Methyl(*p*-tolylsulfonyl)amino]-2-(trimethylsilyl)ethenyl Diphenyldithiophosphinate (3g): Purification by recrystallization from a mixture of hexane and benzene was performed instead of silica gel column chromatography. IR (nujol) 2924, 2854, 1439, 1348, 1245, 1166, 1157, 1103, 966, 864, 847, 721, 610 cm⁻¹; ¹H NMR (CDCl₃) δ 0.15 (s, 9H), 2.44 (s, 3H), 2.70 (s, 3H), 6.05 (d, J = 2.5 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.35– 7.55 (m, 6H), 7.66–7.71 (m, 2H), 7.74–7.85 (m, 4H); ¹³C NMR (CDCl₃) δ –0.61, 21.80, 36.06, 128.52, 128.69 (d, J = 13.3Hz), 129.77, 132.01 (d, J = 10.5 Hz), 132.13 (d, J = 3.3 Hz), 134.15 (d, J = 83.9 Hz), 134.93, 136.27 (d, J = 6.4 Hz), 144.04, 151.42 (d, J = 5.1 Hz); ³¹P NMR (CDCl₃) δ 64.19; Anal. Found: C, 56.20; H, 5.64%. Calcd for C₂₅H₃₀NO₂SiPS₃: C, 56.47; H, 5.69%; mp 160–162 °C.

1-[Methyl(*p*-tolylsulfonyl)amino]ethenyl Diphenyldithiophosphinate (3h): IR (nujol) 2925, 2855, 2360, 1601, 1345, 1152, 930, 718, 668 cm⁻¹; ¹H NMR (CDCl₃) δ 2.41 (s, 3H), 2.70 (s, 3H), 5.49 (dd, J = 3.5, 1.5 Hz, 1H), 5.55 (dd, J = 3.5, 1.5 Hz, 1H), 7.26–7.32 (m, 2H), 7.42–7.54 (m, 6H), 7.62–7.67 (m, 2H), 7.91–7.99 (m, 4H); ¹³C NMR (CDCl₃) δ 21.70, 37.08, 128.11, 128.36 (d, J = 6.6 Hz), 128.74 (d, J = 13.4 Hz), 129.70, 131.98 (d, J = 11.0 Hz), 132.28 (d, J = 2.9 Hz), 133.53 (d, J = 84.0 Hz), 134.10, 136.21 (d, J = 7.3 Hz), 144.11; ³¹P NMR (CDCl₃) δ 63.97; Anal. Found: C, 57.24; H, 4.92%. Calcd for C₂₂H₂₂-NO₂PS₃: C, 57.49; H, 4.82%; mp 99–100 °C.

(*E*)-2-Phenyl-1-[(2-propenyl)(*p*-tolylsulfonyl)amino]ethenyl Diphenyldithiophosphinate (3i): IR (nujol) 2924, 2854, 1358, 1167, 1101, 723 cm⁻¹; ¹H NMR (CDCl₃) δ 2.40 (s, 3H), 3.72 (br, 2H), 4.85–4.92 (m, 1H), 4.94–5.02 (m, 1H), 5.64 (ddt, *J* = 17.0, 10.0, 7.0 Hz, 1H), 6.79 (d, *J* = 2.5 Hz, 1H), 7.17–7.27 (m, 5H), 7.30–7.54 (m, 8H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.76–7.94 (m, 4H); ¹³C NMR (CDCl₃) δ 21.73, 52.22, 118.83, 125.32 (d, *J* = 8.1 Hz), 128.30, 128.63, 128.75 (d, *J* = 11.0 Hz), 132.21 (d, *J* = 3.3 Hz), 132.98, 134.04, 134.30 (d, *J* = 83.5 Hz), 136.00, 144.09, 146.96 (d, *J* = 6.8 Hz); ³¹P NMR (CDCl₃) δ 64.31; Anal. Found: C, 64.12; H, 5.09%. Calcd for C₃₀H₂₈NO₂PS₃: C, 64.15; H, 5.02%; mp 132–134 °C.

(*E*)-1-[Methyl(*p*-nitrophenylsulfonyl)amino]-2-phenylethenyl Diphenyldithiophosphinate (3j): IR (nujol) 2923, 2854, 1524, 1434, 1350, 1335, 1160, 718, 635 cm⁻¹; ¹H NMR (CDCl₃) δ 2.76 (s, 3H), 6.75 (d, *J* = 3.0 Hz, 1H), 7.24–7.31 (m, 3H), 7.32–7.38 (m, 2H), 7.38–7.49 (m, 4H), 7.49–7.56 (m, 2H), 7.74–7.90 (m, 4H), 7.92–7.97 (m, 2H), 8.21–8.26 (m, 2H); ¹³C NMR (CDCl₃) δ 36.02, 124.11, 125.40 (d, *J* = 8.1 Hz), 128.78, 128.86 (d, *J* = 13.4 Hz), 129.31 (d, *J* = 1.4 Hz), 129.64, 129.72, 131.87 (d, *J* = 10.5 Hz), 132.44 (d, *J* = 3.3 Hz), 133.72 (d, *J* = 2.9 Hz), 134.03 (d, *J* = 83.0 Hz), 144.09, 147.10 (d, *J* = 7.1 Hz), 150.33; ³¹P NMR (CDCl₃) δ 65.13; Anal. Found: C, 57.42; H, 4.23%. Calcd for C₂₇H₂₃N₂O₄PS₃: C, 57.23; H, 4.09%; mp 126–127 °C.

t-Butyl *N*,3,3-Trimethyl-2-phenylbutanethioimidate (5, a 93:7 Mixture of Diastereomers): IR (neat) 2957, 2905, 1629, 1452, 1392, 1364, 1163, 976, 725, 703 cm⁻¹; ¹HNMR (CDCl₃) δ 1.01 (s, 9 × 0.93H), 1.10 (s, 9 × 0.07H), 1.36 (s, 9 × 0.93H), 1.56 (s, 9 × 0.07H), 3.25 (s, 3 × 0.07H), 3.53 (s, 3 × 0.93H), 3.90 (s, 1 × 0.93H), 4.03 (s, 1 × 0.07H), 7.20–7.33 (m, 3H), 7.36–7.44 (m, 2H); ¹³CNMR (CDCl₃) δ (major isomer) 28.66, 33.09, 36.60, 42.81, 49.02, 68.90, 126.53, 127.48, 131.32, 138.68, 162.42; Anal. Found: C, 73.47; H, 9.66%. Calcd for C₁₇H₂₇NS: C, 73.59; H, 9.81%.

N,3,3-Trimethyl-2-phenylbutanethioamide (8): IR (nujol) 3370, 2925, 2867, 1520, 1365, 1297, 1098, 1053, 740, 711 cm⁻¹; ¹H NMR (CDCl₃) δ 1.11 (s, 9H), 3.10 (s, 1.5H), 3.11 (s, 1.5H), 3.60 (s, 1H), 7.24–7.32 (m, 3H), 7.44 (br, 1H), 7.62–7.66 (m, 2H); ¹³C NMR (CDCl₃) δ 28.72, 32.99, 35.67, 72.63, 127.40, 127.98, 130.39, 138.26, 206.07; Anal. Found: C, 70.62; H, 8.51%. Calcd for C₁₃H₁₉NS: C, 70.54; H, 8.65%; mp 141–142 °C.

O-{(*E*)-1-[Methyl(*p*-tolylsulfonyl)amino]-2-phenylethenyl} Thiobenzoate ((*E*)-10): IR (nujol) 2924, 2854, 1349, 1264, 1162, 1048, 1027, 990, 686 cm⁻¹; ¹H NMR (CDCl₃) δ 2.28 (s, 3H), 3.10 (s, 3H), 6.26 (s, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 7.30–7.40 (m, 5H), 7.55–7.60 (m, 3H), 7.62–7.68 (m, 2H), 7.88–8.04 (m, 2H); ¹³C NMR (CDCl₃) δ 21.63, 37.51, 119.74, 127.77, 128.23, 128.60, 128.82, 128.85, 129.52, 129.61, 131.83, 133.58, 136.17, 137.30, 142.55, 143.99, 209.53; Anal. Found: C, 65.17; H, 5.15%. Calcd for C₂₃H₂₁NO₃S₂: C, 65.22; H, 5.00%; mp 138–140 °C. *N*-Methyl-*N*-(*p*-tolylsulfonyl)phenylacetamide (11): IR (neat) 3031, 1696, 1356, 1167, 1075, 673, 583 cm⁻¹; ¹H NMR (CDCl₃) δ 2.44 (s, 3H), 3.28 (s, 3H), 4.04 (s, 2H), 7.11–7.16 (m, 2H), 7.22–7.34 (m, 5H), 7.67–7.72 (m, 2H); ¹³C NMR (CDCl₃) 21.78, 33.43, 43.23, 127.33, 127.69, 128.75, 129.54, 130.04, 133.62, 136.20, 145.12, 171.44; Anal. Found: C, 63.05; H, 5.66%. Calcd for C₁₆H₁₇NO₃S: C, 63.34; H, 5.65%.

Dodecyl Phenylethynyl Sulfide (12a): IR (neat) 2925, 2854, 2168, 1596, 1488, 1466, 753, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, *J* = 7.0 Hz, 3H), 1.24–1.38 (m, 16H), 1.42–1.50 (m, 2H), 1.77–1.84 (m, 2H), 2.81 (t, *J* = 7.5 Hz, 2H), 7.27–7.34 (m, 3H), 7.39–7.44 (m, 2H); ¹³C NMR (CDCl₃) δ 14.10, 22.67, 28.26, 29.11, 29.32, 29.33, 29.48, 29.57, 29.61, 29.64, 31.90, 35.82, 79.71, 92.83, 123.60, 127.88, 128.22, 131.37. Anal. Found: C, 79.54; H, 10.24%. Calcd for C₂₀H₃₀S: C, 79.41; H, 9.99%.

Dodecyl 1-Octynyl Sulfide (12c): IR (neat) 2956, 2926, 2855, 1467, 1378, 722 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H), 1.20–1.34 (m, 20H), 1.35–1.44 (m, 4H), 1.47–1.54 (m, 2H), 1.68–1.75 (m, 2H), 2.29 (t, J = 7.0 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.02, 14.09, 20.12, 22.55, 22.68, 28.29, 28.51, 28.77, 29.15, 29.24, 29.34, 29.50, 29.59, 29.63, 29.65, 31.33, 31.91, 35.45, 68.31, 94.23. Anal. Found: C, 77.14; H, 12.58%. Calcd for C₂₀H₃₈S: C, 77.34; H, 12.33%.

Dodecyl *p*-Methoxyphenylethynyl Sulfide (12e): IR (neat) 2925, 2854, 1606, 1507, 1289, 1249, 1171, 1035, 830 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 7.5 Hz, 3H), 1.20–1.36 (m, 16H), 1.40–1.47 (m, 2H), 1.75–1.82 (m, 2H), 2.78 (t, J = 7.0 Hz, 2H), 3.80 (s, 3H), 6.82 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.09, 22.67, 28.28, 29.12, 29.30, 29.33, 29.48, 29.57, 29.61, 29.64, 31.89, 35.87, 55.23, 77.66, 92.54, 113.85, 115.69, 133.28, 159.49. Anal. Found: C, 75.91; H, 9.84%. Calcd for C₂₁H₃₂OS: C, 75.85; H, 9.70%.

Dodecyl *o*-**Methoxyphenylethynyl Sulfide** (**12f**): IR (neat) 2925, 2854, 2171, 1594, 1490, 1464, 1258, 1115, 1027, 749 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.20–1.37 (m, 16H), 1.41–1.48 (m, 2H), 1.78–1.86 (m, 2H), 2.81 (t, J = 7.5 Hz, 2H), 3.86 (s, 3H), 6.83–6.90 (m, 2H), 7.22–7.27 (m, 1H), 7.35–7.39 (m, 1H); ¹³C NMR (CDCl₃) δ 14.10, 22.66, 28.30, 29.16, 29.22, 29.33, 29.49, 29.59, 29.61, 29.64, 31.89, 35.95, 55.72, 83.51, 89.03, 110.54, 112.85, 120.34, 129.27, 133.28, 159.98. Anal. Found: C, 76.13; H, 9.64%. Calcd for C₂₁H₃₂OS: C, 75.85; H, 9.70%.

Dodecyl *p*-(**Trifluoromethyl**)**phenylethynyl Sulfide** (12g): IR (neat) 2926, 2855, 2166, 1614, 1323, 1168, 1130, 1067, 840 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20–1.38 (m, 16H), 1.40–1.50 (m, 2H), 1.77–1.84 (m, 2H), 2.83 (t, *J* = 7.5 Hz, 2H), 7.46–7.49 (m, 2H), 7.52–7.56 (m, 2H); ¹³C NMR (CDCl₃) δ 14.08, 22.68, 28.22, 29.10, 29.35 (×2), 29.48, 29.58, 29.63, 29.66, 31.92, 35.82, 83.41, 91.84, 123.95 (q, *J* = 270.6 Hz), 125.18 (q, *J* = 3.9 Hz), 127.42, 129.35 (q, *J* = 32.4 Hz), 131.16. Anal. Found: C, 68.34; H, 8.16%. Calcd for C₂₁H₂₉F₃S: C, 68.07; H, 7.89%.

Cyclohexylethynyl Dodecyl Sulfide (12h): IR (neat) 2927, 2854, 1448, 1361, 1296, 1232, 974, 888, 721 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20–1.52 (m, 24H), 1.64–1.83 (m, 6H), 2.45–2.55 (m, 1H), 2.66 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.08, 22.66, 24.78, 25.86, 28.23, 29.10, 29.13, 29.33, 29.46, 29.57, 29.61, 29.64, 30.37, 31.90, 32.71, 35.51, 68.31, 98.15. Anal. Found: C, 77.85; H, 12.02%. Calcd for C₂₀H₃₆S: C, 77.85; H, 11.76%.

Dodecyl 3,3-Dimethyl-1-butynyl Sulfide (12i): IR (neat)

2967, 2926, 2855, 1458, 1362, 1252, 1203, 722 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.22 (s, 9H), 1.23–1.33 (m, 16H), 1.34–1.44 (m, 2H), 1.70 (tt, J = 7.0, 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.09, 22.67, 28.22, 28.69, 29.01, 29.14, 29.33, 29.46, 29.58, 29.62, 29.65, 31.00, 31.90, 35.49, 67.05, 102.08. Anal. Found: C, 76.54; H, 12.26%. Calcd for C₁₈H₃₄S: C, 76.52; H, 12.13%.

Dodecyl Ethynyl Sulfide (12j): IR (neat) 3309, 2925, 2854, 2044, 1466, 1061, 722, 666, 530 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.20–1.35 (m, 16H), 1.36–1.44 (m, 2H), 1.74 (tt, J = 7.0, 7.5 Hz, 2H), 2.73 (t, J = 7.5 Hz, 2H), 2.74 (s, 1H); ¹³C NMR (CDCl₃) δ 14.10, 22.68, 28.22, 29.07, 29.14, 29.33, 29.46, 29.56, 29.62, 29.63, 31.91, 35.11, 74.76, 81.69. Anal. Found: C, 74.21; H, 11.74%. Calcd for C₁₄H₂₆S: C, 74.26; H, 11.57%.

(*E*)-1-Dodecylsulfanyl-2-phenylethenyl Diphenyldithiophosphinate (13a): IR (neat) 3056, 2925, 2853, 1437, 1097, 925, 749, 721, 690, 655 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (t, *J* = 7.0 Hz, 3H), 1.14–1.34 (m, 18H), 1.38–1.46 (m, 2H), 2.71 (t, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 3.5 Hz, 1H), 7.23–7.27 (m, 1H), 7.29–7.34 (m, 2H), 7.45–7.56 (m, 8H), 8.00–8.07 (m, 4H); ¹³C NMR (CDCl₃) δ 14.10, 22.65, 28.63, 29.09, 29.31, 29.36, 29.41, 29.51, 29.59, 29.60, 31.88, 34.40, 125.02 (d, *J* = 8.1 Hz), 127.94, 128.07, 128.44 (d, *J* = 13.4 Hz), 129.61 (d, *J* = 1.5 Hz), 131.85 (d, *J* = 10.9 Hz), 131.91 (d, *J* = 3.4 Hz), 133.81 (d, *J* = 83.0 Hz), 135.84 (d, *J* = 2.9 Hz), 145.73 (d, *J* = 7.6 Hz); ³¹P NMR (CDCl₃) δ 63.45. Anal. Found: C, 69.64; H, 7.50%. Calcd for C₃₂H₄₁PS₃: C, 69.52; H, 7.47%.

(E)-2-Phenyl-1-p-tolylsulfanylethenyl Diphenyldithiophosphinate (13b): IR (nujol) 2924, 2855, 1458, 1437, 1377, 1095, 928, 898, 813, 718, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 2.31 (s, 3H), 7.02 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 7.22-7.34 (m, 3H), 7.36-7.42 (m, 4H), 7.46-7.52 (m, 3H), 7.57 (d, J = 7.5 Hz, 2H), 7.80–7.94 (m, 4H); ¹³C NMR (CDCl₃) δ 21.11, 123.39 (d, J = 8.1 Hz), 128.07, 128.35 (d, J = 13.4 Hz), 128.71, 129.60 (d, J = 1.4 Hz), 129.65, 130.43, 130.55, 131.80 (d, J = 3.3 Hz), 131.87 (d, J = 10.9 Hz), 133.67 (d, J = 83.0Hz), 135.53 (d, J = 2.4 Hz), 137.06, 149.55 (d, J = 7.1 Hz); ³¹PNMR (CDCl₃) δ 64.81. Anal. Found: C, 68.03; H, 5.03%. Calcd for C₂₇H₂₃PS₃: C, 68.32; H, 4.88%. mp 87.5-88.0 °C. The crystal data have been deposited at CCDC, Cambridge, UK and given the reference number CCDC 670503. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

(*E*)-1-Dodecylsulfanyl-1-octenyl Diphenyldithiophosphinate (13c): IR (neat) 3056, 2924, 2854, 1457, 1437, 1097, 852, 748, 721, 690, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0Hz, 6H), 1.18–1.45 (m, 28H), 2.25–2.33 (m, 2H), 2.60 (t, J = 7.5 Hz, 2H), 6.30 (dt, J = 3.5, 7.5 Hz, 1H), 7.42–7.53 (m, 6H), 7.95–8.20 (m, 4H); ¹³C NMR (CDCl₃) δ 14.08 (×2), 22.55, 22.65, 28.60, 28.77 (d, J = 2.4 Hz), 28.83, 29.17, 29.32, 29.49, 29.56 (×2), 29.61, 29.62, 31.61, 31.72 (d, J = 1.9 Hz), 31.88, 33.41, 122.64 (d, J = 7.6 Hz), 128.33 (d, J = 13.4 Hz), 131.80 (d, J = 11.0 Hz), 134.05 (d, J = 83.1 Hz), 148.04 (d, J = 7.1 Hz), 152.70 (d, J = 7.8 Hz); ³¹P NMR (CDCl₃) δ 62.34. Anal. Found: C, 68.73; H, 8.72%. Calcd for C₃₂H₄₉PS₃: C, 68.52; H, 8.80%.

(*E*)-1-*p*-Tolylsulfanyl-1-octenyl Diphenyldithiophosphinate (13d): IR (neat) 2954, 2925, 2855, 2370, 1491, 1437, 1097, 805, 721 655 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 7.0 Hz, 3H),

1.20–1.36 (m, 6H), 1.40–1.48 (m, 2H), 2.33 (s, 3H), 2.39–2.46 (m, 2H), 6.65–6.71 (m, 1H), 7.00 (dd, J = 2.0, 7.5 Hz, 2H), 7.07 (d, J = 7.5 Hz, 2H), 7.37–7.43 (m, 4H), 7.45–7.51 (m, 2H), 7.84–7.90 (m, 4H); ¹³C NMR (CDCl₃) δ 14.06, 21.03, 22.53, 28.81, 28.85 (d, J = 8.0 Hz), 31.53, 32.12 (d, J = 4.0 Hz), 121.45 (d, J = 7.1 Hz), 121.47 (d, J = 7.6 Hz), 128.25 (d, J = 13.4 Hz), 129.56, 131.08, 131.65 (d, J = 2.9 Hz), 131.79 (d, J = 11.0 Hz), 133.78 (d, J = 83.6 Hz), 136.40, 156.27 (d, J = 6.6 Hz); ³¹P NMR (CDCl₃) δ 63.68. Anal. Found: C, 67.09; H, 6.43%. Calcd for C₂₇H₃₁PS₃: C, 67.18; H, 6.47%.

(*E*)-1-Dodecylsulfanyl-2-*p*-methoxyphenylethenyl Diphenyldithiophosphinate (13e): IR (neat) 2925, 2853, 1605, 1506, 1437, 1252, 1177, 1097, 1034, 722 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (t, *J* = 7.0 Hz, 3H), 1.14–1.36 (m, 18H), 1.40–1.48 (m, 2H), 2.72 (t, *J* = 7.5 Hz, 2H), 3.80 (s, 3H), 6.85 (d, *J* = 9.0 Hz, 2H), 7.08 (d, *J* = 3.5 Hz, 1H), 7.44–7.54 (m, 8H), 8.00–8.06 (m, 4H); ¹³C NMR (CDCl₃) δ 14.06, 22.61, 28.61, 29.06, 29.27, 29.32, 29.38, 29.48, 29.55, 29.57, 31.83, 34.32, 55.15, 113.30, 121.79 (d, *J* = 8.1 Hz), 128.35 (d, *J* = 13.4 Hz), 128.60 (d, *J* = 2.9 Hz), 131.28 (d, *J* = 1.4 Hz), 131.80 (d, *J* = 11.0 Hz), 131.80 (d, *J* = 3.3 Hz), 133.86 (d, *J* = 82.6 Hz), 146.08 (d, *J* = 7.6 Hz), 159.37; ³¹P NMR (CDCl₃) δ 63.40. Anal. Found: C, 67.81; H, 7.44%. Calcd for C₃₃H₄₃OPS₃: C, 68.00; H, 7.44%.

(*E*)-1-Dodecylsulfanyl-2-*o*-methoxyphenylethenyl Diphenyldithiophosphinate (13f): IR (neat) 3056, 2924, 2853, 1597, 1481, 1464, 1436, 1247, 1097, 748, 720, 690, 654 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (t, *J* = 7.0 Hz, 3H), 1.14–1.32 (m, 18H), 1.36– 1.44 (m, 2H), 2.67 (t, *J* = 7.5 Hz, 2H), 3.76 (s, 3H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.91 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.22–7.27 (m, 1H), 7.35 (d, *J* = 4.0 Hz, 1H), 7.44–7.54 (m, 6H), 7.60 (d, *J* = 7.5 Hz, 1H), 8.01–8.08 (m, 4H); ¹³C NMR (CDCl₃) δ 14.07, 22.63, 28.63, 29.09, 29.12, 29.29, 29.40, 29.51, 29.57, 29.59, 31.85, 34.19, 55.37, 110.16, 119.71, 124.77 (d, *J* = 8.1 Hz), 124.84 (d, *J* = 2.4 Hz), 128.35 (d, *J* = 13.4 Hz), 129.63, 130.66 (d, *J* = 1.9 Hz), 131.76 (d, *J* = 2.9 Hz), 131.86 (d, *J* = 11.0 Hz), 133.94 (d, *J* = 83.0 Hz), 141.30 (d, *J* = 7.6 Hz), 156.90 (d, *J* = 0.9 Hz); ³¹P NMR (CDCl₃) δ 63.16. Anal. Found: C, 68.03; H, 7.31%. Calcd for C₃₃H₄₃OPS₃: C, 68.00; H, 7.44%.

(*E*)-1-Dodecylsulfanyl-2-*p*-(trifluoromethyl)phenylethenyl Diphenyldithiophosphinate (13g): IR (neat) 2926, 2854, 1437, 1324, 1167, 1126, 1068, 908, 722 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (t, *J* = 7.5 Hz, 3H), 1.16–1.36 (m, 18H), 1.42–1.50 (m, 2H), 2.75 (t, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 3.0 Hz, 1H), 7.44–7.62 (m, 10H), 8.00–8.08 (m, 4H); ¹³C NMR (CDCl₃) δ 14.04, 22.60, 28.54, 29.02, 29.26, 29.36 (×2), 29.46, 29.54, 29.55, 31.82, 34.48, 123.96 (q, *J* = 270.5 Hz), 124.83 (q, *J* = 3.8 Hz), 128.44 (d, *J* = 4.8 Hz), 128.49 (d, *J* = 8.1 Hz), 129.39 (d, *J* = 32.5 Hz), 129.65 (d, *J* = 1.4 Hz), 131.77 (d, *J* = 10.9 Hz), 132.00 (d, *J* = 2.9 Hz), 133.62 (d, *J* = 83.5 Hz), 139.15 (d, *J* = 1.0 Hz), 143.17 (d, *J* = 7.6 Hz); ³¹P NMR (CDCl₃) δ 63.87. Anal. Found: C, 63.71; H, 6.47%. Calcd for C₃₃H₄₀F₃PS₃: C, 63.84; H, 6.49%.

(*E*)-2-Cyclohexyl-1-(dodecylsulfanyl)ethenyl Diphenyldithiophosphinate (13h): IR (neat) 3056, 2925, 2852, 1956, 1899, 1810, 1437, 1097, 721, 690, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 7.5 Hz, 3H), 1.00–1.34 (m, 23H), 1.36–1.46 (m, 2H), 1.56–1.70 (m, 5H), 2.56–2.66 (m, 3H), 6.17 (dd, J = 3.5, 10.0 Hz, 1H), 7.41–7.52 (m, 6H), 7.95–8.02 (m, 4H); ¹³C NMR (CDCl₃) δ 14.05, 22.60, 25.37, 25.76, 28.53, 29.13, 29.26, 29.43, 29.45, 29.51, 29.54, 29.57, 31.83, 32.14 (d, J = 2.4 Hz), 33.27, 40.70 (d, J = 0.9 Hz), 120.86 (d, J = 7.6 Hz), 128.26 (d, J = 13.4 Hz), 131.65 (d, J = 2.9 Hz), 131.76 (d, J = 11.0 Hz), 134.02 (d, J =83.0 Hz), 157.86 (d, J = 7.1 Hz); ³¹P NMR (CDCl₃) δ 62.13. Anal. Found: C, 68.71; H, 8.51%. Calcd for $C_{32}H_{47}PS_3$: C, 68.77; H, 8.48%.

(*E*)-1-Dodecylsulfanyl-3,3-dimethyl-1-butenyl Diphenyldithiophosphinate (13i): IR (neat) 2956, 2925, 2854, 2360, 1458, 1437, 1362, 1202, 1097, 721, 690, 655 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, *J* = 7.0 Hz, 3H), 1.13 (s, 9H), 1.20–1.34 (m, 18H), 1.40– 1.50 (m, 2H), 2.67 (t, *J* = 8.0 Hz, 2H), 6.28 (d, *J* = 4.0 Hz, 1H), 7.42–7.52 (m, 6H), 7.94–8.02 (m, 4H); ¹³C NMR (CDCl₃) δ 14.09, 22.64, 28.78, 29.15, 29.30, 29.47, 29.48, 29.54, 29.58, 29.60, 29.78 (d, *J* = 1.9 Hz), 31.87, 33.95, 35.22 (d, *J* = 1.4 Hz), 122.45 (d, *J* = 7.3 Hz), 128.30 (d, *J* = 13.4 Hz), 131.68 (d, *J* = 2.9 Hz), 131.84 (d, *J* = 10.5 Hz), 134.03 (d, *J* = 83.0 Hz), 161.41 (d, *J* = 7.6 Hz); ³¹P NMR (CDCl₃) δ 62.54. Anal. Found: C, 67.66; H, 8.39%. Calcd for C₃₀H₄₅PS₃; C, 67.62; H, 8.51%.

1-Dodecylsulfanylethenyl Diphenyldithiophosphinate (13j): IR (neat) 2924, 2853, 1576, 1436, 1309, 1096, 723, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.18–1.38 (m, 18H), 1.42–1.47 (m, 2H), 2.64 (t, J = 7.5 Hz, 2H), 5.56 (dd, J = 1.5, 3.5 Hz, 1H), 5.69 (dd, J = 1.5, 3.5 Hz, 1H), 7.38–7.58 (m, 6H), 7.96–8.02 (m, 4H); ¹³C NMR (CDCl₃) δ 14.09, 22.65, 27.99, 28.78, 29.07, 29.31, 29.43, 29.53, 29.59, 29.61, 31.88, 34.15, 123.66 (d, J = 7.3 Hz), 128.42 (d, J = 13.4 Hz), 131.87 (d, J =11.0 Hz), 131.93 (d, J = 2.4 Hz), 133.06 (d, J = 6.8 Hz), 133.68 (d, J = 84.0 Hz); ³¹P NMR (CDCl₃) δ 62.81. Anal. Found: C, 65.64; H, 7.90%. Calcd for C₂₆H₃₇PS₃: C, 65.50; H, 7.82%.

Dodecyl Phenylethanedithioate (14): IR (neat) 2925, 2854, 2370, 1453, 1219, 1131, 991, 858, 697 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, *J* = 7.0 Hz, 3H), 1.22–1.33 (m, 16H), 1.34–1.41 (m, 2H), 1.61–1.69 (m, 2H), 3.18 (t, *J* = 7.5 Hz, 2H), 4.31 (s, 2H), 7.25–7.38 (m, 5H); ¹³C NMR (CDCl₃) δ 14.10, 22.67, 27.12, 29.04, 29.09, 29.32, 29.40, 29.52, 29.60, 29.61, 31.89, 37.03, 58.13, 127.17, 128.49, 129.03, 137.09, 235.81. Anal. Found: C, 71.65; H, 9.62%. Calcd for C₂₀H₃₂S₂: C, 71.37; H, 9.58%.

Dodecyl (*E*)-2-Phenyl-1-(phenylsulfanyl)ethenyl Sulfide (15a): IR (neat) 3068, 2925, 2853, 2360, 1950, 1582, 1440, 1024, 739, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.14–1.40 (m, 18H), 1.48–1.55 (m, 2H), 2.79 (t, *J* = 7.5 Hz, 2H), 7.11 (s, 1H), 7.22–7.38 (m, 6H), 7.41–7.46 (m, 2H), 7.62–7.66 (m, 2H); ¹³C NMR (CDCl₃) δ 14.10, 22.68, 28.64, 29.07, 29.34, 29.44, 29.54, 29.62, 29.63, 29.65, 31.91, 33.80, 127.01, 127.58, 128.07, 129.02, 129.52, 130.15, 131.71, 135.20, 136.20, 137.51. Anal. Found: C, 75.63; H, 8.96%. Calcd for C₂₆H₃₆S₂: C, 75.67; H, 8.79%.

(Z)-1-Butylsulfanyl-2-phenylethenyl Dodecyl Sulfide (15b): IR (neat) 2956, 2925, 2854, 1560, 1491, 1466, 928, 750, 691 cm⁻¹; ¹HNMR (CDCl₃) δ 0.89 (t, J = 7.0 Hz, 3H), 0.95 (t, J =7.0 Hz, 3H), 1.18–1.51 (m, 20H), 1.52–1.59 (m, 2H), 1.60–1.69 (m, 2H), 2.82 (t, J = 6.0 Hz, 2H), 2.83 (t, J = 7.0 Hz, 2H), 6.99 (s, 1H), 7.21–7.60 (m, 1H), 7.31–7.36 (m, 2H), 7.60–7.65 (m, 2H); ¹³C NMR (CDCl₃) δ 13.70, 14.10, 21.93, 22.68, 28.69, 29.14, 29.34 (×2), 29.47, 29.55, 29.63, 29.69, 31.16, 31.90, 33.28, 33.87, 127.12, 127.98, 129.31, 132.97, 134.32, 136.56. Anal. Found: C, 73.55; H, 10.44%. Calcd for C₂₄H₄₀S₂: C, 73.40; H, 10.27%.

This work was supported by Grants-in-Aid for Scientific Research and COE Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. A.K. ac-knowledges JSPS for financial support. We thank Prof. Masaki Shimizu (Kyoto University) for helping with the X-ray crystal-lographic analysis.

References

1 a) H. Kuniyasu, in *Catalytic Heterofunctionalization*, ed. by A. Togni, H. Grützmacher, Wiley-VCH, Weinheim, **2001**, Chap. 7. b) F. Alonso, I. P. Beletskaya, M. Yus, *Chem. Rev.* **2004**, *104*, 3079. c) C. Cao, L. R. Fraser, J. A. Love, *J. Am. Chem. Soc.* **2005**, *127*, 17614, and references cited therein.

2 Reviews on the chemistry of *N*-(1-alkynyl)amides, socalled ynamides: a) C. A. Zificsak, J. A. Mulder, R. P. Hsung, C. Rameshkumar, L.-L. Wei, *Tetrahedron* **2001**, *57*, 7575. b) J. A. Mulder, K. C. M. Kurtz, R. P. Hsung, *Synlett* **2003**, 1379. c) B. Witulski, C. Alayrac, in *Science of Synthesis*, ed. by A. de Meijere, Thieme, Stuttgart, **2005**, Vol. 24, Chap. 24.4.4.2.

3 Brønsted acid-catalyzed addition reaction of allyl or propargyl alcohol followed by Claisen rearrangement: a) J. A. Mulder, R. P. Hsung, M. O. Frederick, M. R. Tracey, C. A. Zificsak, *Org. Lett.* **2002**, *4*, 1383. b) M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, M. P. Tracey, *Org. Lett.* **2003**, *5*, 2663. Hydrohalogenation: c) J. A. Mulder, K. C. M. Kurtz, R. P. Hsung, H. Coverdale, M. O. Frederick, L. Shen, C. A. Zificsak, *Org. Lett.* **2003**, *5*, 1547. Brønsted acid-catalyzed hydroarylation: d) Y. Zhang, *Tetrahedron Lett.* **2005**, *46*, 6483. e) Y. Zhang, R. P. Hsung, X. Zhang, J. Huang, B. W. Slafer, A. Davis, *Org. Lett.* **2005**, *7*, 1047. Lewis acid-catalyzed reaction with carbonyl compounds: f) K. C. M. Kurtz, R. P. Hsung, Y. Zhang, *Org. Lett.* **2006**, *8*, 231. g) L. You, Z. F. Al-Rashid, R. Figueroa, S. K. Ghosh, G. Li, T. Lu, R. P. Hsung, *Synlett* **2007**, 1656.

4 A review on the chemistry of 1-alkynyl sulfides: V. A. Potapov, B. A. Trofimov, in *Science of Synthesis*, ed. by A. de Meijere, Thieme, Stuttgart, **2005**, Vol. 24, Chap. 24.4.3.

5 Addition to 1-alkynyl sulfides under acidic conditions: a) F. Manarin, J. A. Roehrs, M. Prigol, D. Alves, C. W. Nogueira, G. Zeni, *Tetrahedron Lett.* **2007**, *48*, 4805. b) A. L. Braga, D. J. Emmerich, C. C. Silveira, T. L. C. Martins, O. E. D. Rodrigues, *Synlett* **2001**, 371.

6 W. Dölling, in *Science of Synthesis*, ed. by A. de Meijere, Thieme, Stuttgart, **2005**, Vol. 24, Chap. 24.2.11; **2005**, Vol. 24, Chap. 24.2.13.

7 This work was communicated: H. Yasui, H. Yorimitsu, K. Oshima, *Chem. Lett.* **2008**, *37*, 40.

8 Syn addition to ynamides under Brønsted acid catalysis was reported in Ref. 3d.

9 G. Peters, J. Org. Chem. 1962, 27, 2198.

10 Treatment of **3a** with 2.2 molar amount of 'BuLi under similar conditions provided **8** in 44% ¹H NMR yield along with the recovery of **3c** in 33% ³¹P NMR yield. The reason why 4.0 molar amount of 'BuLi was needed is not clear.

 a) K. Goda, N. Inamoto, *Chem. Lett.* 1975, 1009. b) K.
 Goda, R. Okazaki, K. Akiba, N. Inamoto, *Tetrahedron Lett.* 1976, 17, 181. c) K. Goda, R. Okazaki, K. Akiba, N. Inamoto, *Bull. Chem. Soc. Jpn.* 1978, 51, 260. d) K. Goda, F. Hanafusa, N. Inamoto, *Bull. Chem. Soc. Jpn.* 1978, 51, 818.

12 p K_a (Ph₂P(=S)SH, in 80% alcohol) = 2.6: a) M. I. Kabachnik, T. A. Mastrukova, A. E. Shipov, T. A. Melentyeva, *Tetrahedron* **1960**, 9, 10. p K_a (PhC(=O)SH, in DMSO) = 5.2, p K_a (PhSH, in DMSO) = 9.8: b) J. Courtot-Coupez, M. Le Démézet, *Bull. Soc. Chim. Fr.* **1969**, 1033.

13 T. B. Clark, K. A. Woerpel, *Organometallics* **2005**, *24*, 6212.

14 Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, *Org. Lett.* **2004**, *6*, 1151.

15 W. A. Higgins, P. W. Vogel, W. G. Craig, J. Am. Chem. Soc. 1955, 77, 1864.

16 This operation converted dodecylthiolithium to 2-dodecylthioethanol. Without this, separation of the product **12** and dodecanethiol was difficult.

- 17 N. Riddel, W. Tam, J. Org. Chem. 2006, 71, 1934.
- 18 P. Zhong, M.-P. Guo, N.-P. Huang, Synth. Commun. 2002, 32, 175.