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An NHC/nickel-catalyzed direct coupling of alcohols and internal alkynes to form α-branched ketones has been developed. This methodology provides a 
new approach to afford branched ketones, which is difficult to access through the hydroacylation of simple internal alkenes with aldehydes. This redox-
neutral and redox-economical coupling is free from any oxidative or reductive additives as well as stoichiometric byproducts. These reactions convert both 
benzylic and aliphatic alcohols and alkynes, two basic feedstock chemicals, into various α-branched ketones in a single chemical step. 

 

The ketone is a fundamental functional group of high synthetic 
utility. The direct preparation of ketones from readily available 
starting materials via carbon-carbon bond formations represents 
one of the most critical challenges in organic synthesis. The 
transition-metal-catalyzed hydroacylation of alkenes, usually 
achieved by the addition of an aldehyde C-H bond across an olefin 
π-bond, is one straightforward strategy for the construction of 
ketones from simple precursors.[1] Despite the high efficiency of 
this transformation, however, several longstanding limitations 
exist. For instance, these processes are typically catalyzed by noble 
metals, most often Rh.[2] Moreover, a coordinating group is usually 
needed on either the alkene or aldehyde substrate to provide 
chelation assistance and suppress the undesired decarbonylation 
reaction.[3] More importantly, most current hydroacylation 
methods are only applicable to terminal alkenes, strain-activated 
cyclic alkenes, or electronically activated alkenes (Figure 1a). [2d, 3d,e, 

4] Unactivated internal alkenes continue to pose a formidable 
challenge to hydroacylation chemistry.[5] 

As an alternative strategy to access the hydroacylation 
products of simple internal alkenes, we considered changing the 
oxidation state of the starting materials. In particular, we reasoned 
that the direct coupling of alcohols and alkynes, two basic 
feedstock chemicals, would probably lead to the same product as 
alkene hydroacylation (Figure 1b). In more detail, we envisioned 
that a direct hydrogen transfer of an alcohol in the presence of a 
nickel catalyst would give catalytic amounts of nickel hydride 
species and an aldehyde.[6] The alkyne would then be 
hydroacylated by the aldehyde via an oxanickelacyclic 
intermediate[7,8] to form a carbon-carbon bond affording an 
enone.[9] We further postulated that the enone would be 
eventually hydrogenated by the initially formed nickel hydride 
species to deliver the α-branched ketone product.  

We noted that in our proposed catalytic cycle, a single nickel 
catalyst would have to perform two catalytic cycles simultaneously, 
and it was unclear whether a suitable ligand could be found to 
allow this single-catalyst, dual-catalytic process to take place. 
Furthermore, the success of our strategy was hinged on addressing 
three challenges (Figure 1b): (i) competitive trimerization of  

Figure 1. Direct synthesis of ketones from internal alkenes and alkynes. (a) 
Hydroacylation of internal alkenes. (b) Direct coupling of alcohols with 
alkynes to form ketones. 
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alkynes[10], which is facile under nickel catalysis, would need to be 
suppressed; (ii) desired formation of oxametallacyclic 
intermediates should be fast enough to avoid competitive aldol 
reaction and Tishchenko reaction of transient aldehydes[11]; (iii) the 
conjugate reduction catalyzed by the nickel hydride species, which 
has been rarely studied[12], would need to be highly chemo- and 
regioselective to avoid unproductive reductions of alkynes[13], 
transiently formed aldehydes and enones, as well as ketone 
products. Capitalizing on newly designed N-heterocyclic carbene 
(NHC) ligands[14], we recently reported a Ni-catalyzed redox-
economical coupling of benzylic alcohols and alkynes for the direct 
preparation of chiral allylic alcohols.[6a] As part of our continuing 
effort in the field of NHC/metal catalysis, we report here the use of 
an NHC-ligated nickel catalyst to achieve the alcohol-alkyne 
coupling as a means of obtaining the ketone products of an elusive 
hydroacylation of unactivated internal olefins.[15] This base-metal-
catalyzed hydrogenative transfer process[16] free from any 
additives makes the reaction atom-, step- and redox-economical.[17] 

We first test the feasibility of the proposed redox-economical 
coupling utilizing benzylic alcohol (1a) and 4-octyne (2a) as the 
model substrates to form ketone 3a in the presence of 5 mol% of 
Ni(cod)2, tBuONa, and a range of NHC precursor imidazolium salts 
under heating conditions (100 oC). We found that the in-situ 
generated Ni/NHC catalyst indeed deliver the desired ketone 
product (3a), while no reaction occurred in the absence of NHC 
ligands (Table 1, entry 1). We also observed the formation of enone 

4a, which is consistent with our initial proposal. Notably, SIPr was 
found to be superior to other NHC ligands furnishing 3a in 84% 
yield with a high ratio of 3a/4a (88:12, entry 2). The use of IPr 
provided the product in the same ratio of 3a/4a but with other 
byproducts mainly derived from the trimerization of 4-octyne 
(entry 3)[10]. Other NHC ligands such as IMes and IPr*OMe, as well as 
phosphine ligands (see SI), gave both lower reactivity and 
selectivity (entries 4-5). Using SIPr as the optimized ligand, we then 
focused on lowering the amount of enone 4a. As we had proposed 
that 4a might be selectively reduced to 3a by using alcohol as a 
reductant in the presence of the nickel catalyst, we gradually 
increased the equivalent of alcohol. As expected, the amount of 
enone decreased dramatically (entries 6-8). When 1.5 equivalent 
of alcohol (1a) was employed, the enone (4a) was undetectable, 
and the ketone product (3a) could be isolated in 90% yield (entry 
8). 

Table 1. Optimization of reaction conditionsa 

Ph

OH nPr
nPr

Ni(cod)2
 
(5 mol%)

NHC/HCl (5 mol%)
tBuONa (5 mol%) Ph

O
nPr

nPrtoluene (1 M)
100 oC, 12 h

Ph

O
nPr

nPr

+

1a

+

2a 3a 4a

R2

N

R1R1

R1

R1 R1
R1

R1
R1

N

R2

N N R1 = H, R2 = Me: IMes
R1 = Me, R2 = H: IPr
R1 = Ph, R2 = OMe: IPr*OMe

SIPr  

Entry 1a/2a NHC Yield of 3a (%)b  3a/4ab  

1 1:1.2 none 0 -- 

2 1:1.2 SIPr 84 88:12 

3 1:1.2 IPr 79 88:12 

4 1:1.2 IMes 67 79:21 

5 1:1.2 IPr*OMe 64 73:27 

6 1:1 SIPr 88 94:6 

7 1.2:1 SIPr 91 98:2 

8 1.5:1 SIPr 92 (90)c >99:1 

a Reactions were performed on 0.2 mmol scale.b Determined by 1H 
NMR analysis using an internal standard. c Isolated yield. 
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With the optimized conditions in hand, we next examined the 
generality of this nickel-catalyzed coupling reaction using an array 
of benzyl alcohols and alkynes. As shown in Table 2, various 
benzylic alcohols with electron-donating substituents such as 
methyl or alkoxyl groups at ortho-, meta-, and para-position 
efficiently coupled with 4-octyne (2a) to give the corresponding 
ketones in high yields (86-94%, 3a–3h). As for benzylic alcohols 
with electron-withdrawing substituents such as fluoro and 
trifluoromethyl groups, bulkier ligand IPr*OMe was used instead of 
SIPr, and ketone products were obtained in high yields (84-90%, 3i 
and 3j). In addition to 4-octyne, symmetric internal alkynes 
including 3-hexyne, 5-decyne, 7-tetradecyne, and a cyclic alkyne 
(cyclododecyne), were all competent substrates for this redox-
economical transformation (3k–3n). Moreover, unsymmetric 
internal alkynes also served as viable substrates, and the products 
were generated in high yields (77-87%, 3o–3r) as regioisomeric 
mixtures. Given that the similar size of alkyl substituents on the 
alkynes, the reactions using 3-octyne or 2-hexyne gave products in 
reasonable levels of regioselectivity (1.9-3.5:1, 3o, 3p). In the case 
of 4-methyl-2-pentyne, the catalyst could effectively differentiate 
the isopropyl and methyl group substituents furnishing the product 
in regioselectivity of 6.7:1 (3q), while the use of an aryl-alkyl 
internal alkyne (1-phenyl-1-hexyne) afforded the product in 
excellent regioselectivity (12.5:1, 3r). Importantly, a gram-scale (8 
mmol) was successfully performed to deliver products in high 
yields (84%, 3a). It bears mentioning that in all these cases, enones 
4 were not observed in the reaction mixture(3/4 > 20/1), further 
highlight the efficiency and robustness of the transformation.  

Next, we surveyed the possibility of expanding the reaction to 
simple aliphatic alcohol substrates. Due to the more challenging 
dehydrogenation of aliphatic alcohols compared to that of benzylic 
alcohols, and more labile of the transiently formed aliphatic 
aldehydes to undergo aldol reaction and Tishchenko reaction, the 
application of simple aliphatic alcohols to this novel coupling 
reaction was non-trivial. Fortunately, we identified IPr*OMe as a 
suitable ligand to efficiently couple aliphatic alcohols and alkynes 
for the synthesis of alkyl-alkyl ketones. As shown in Table 3, 
aliphatic alcohols, including long linear alcohols (6a-6e), α- or β-
branched alcohols (6g and 6h), β-amino alcohols (6i), and ethanol 
(6j), were all viable substrates for this protocol affording products 
in moderate to high yields (45-89%). Functional groups such as 
ethers (6k and 6l), silyl-ethers (6m), fluoride (6k), trifluoromethoxy 
(6l) group, and aniline (6i), are well tolerated under the catalytic 
conditions. Alcohols bearing pyridine or thiophene heterocycles 
were compatible, giving products in moderate yields (6n and 6o). 
In the case of α-branched alcohol, ester byproduct was observed, 
which is formed by the Tishchenko reaction of a transient aldehyde; 
and the desired ketone product was obtained in moderate yield 
(6g). Notably, coupling reactions involving both labile aldehydes 
(phenylacetaldehyde (6f), amino acetaldehyde (6i), and 
acetaldehyde (6j)) and the corresponding ketone products with 
acidic α-protons, which are more inclined to go aldol reaction, 
were performed smoothly to give products in synthetically useful 
yields. 

Table 2. Nickel-catalyzed coupling of benzylic alcohols with alkynesa 

Ar

OH
+

R3

R2
Ar

O

R3

R2

32 
(0.2 mmol)

1 
(1.5 eq.)

Ni(cod)2
 
(5 mol%)

SIPr/HCl (5 mol%)
tBuONa (5 mol%)
toluene (1.0 M)

100 oC, 12 h

Ph
nPr

O
nPr

3a, 90%
(84%, 8 mmol scale)

nPr

O
nPrMeO

MeO
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O
nPr
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nPr

O
nPr
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O
nPr
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nPr

O
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O

nPr

O
nPr

nPr

O
nPr

Ph
Et

O

Et Ph
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O
nBu

nHex

O
nHex
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Me

O
O

nPr

O
nPr

F3C

nPr

O
nPr

F

3b, 89% 3c, 86%

3d, 94% 3e, 85% 3f, 88%

3g, 93% 3h, 90% 3i, 90%b

3j, 84%b 3k, 88% 3l, 84%

3m, 79% 3o, 82%, (1.9:1)
c

3p, 77%, (3.5:1)
c 3r, 87%, (12.5:1)

c3q, 84%, (6.7:1)
c

Ph
nBu

O

Et

Ph
nPr

O

Me Ph
iPr

O

Me Ph
nPr

O

Ph

Ph

O

12

3n, 69%

Ar

O

R3

R2

4

+

3/4
 > 20/1 in all cases

 

a Isolated yields on 0.2 mmol scale reactions. b Using IPr*OMe instead 
of SIPr as the ligand. c Ratio of regioisomers. 
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To get insight into the reaction mechanism, we performed 
additional experiments. We first examined the coupling of benzyl 
alcohol (1a) and 4-octyne (2a) under the standard conditions. 
When the reaction was heated for just 5 minutes, we obtained the 
ketone (3a) in a 60% NMR yield, alone with enone 4a, allylic alcohol 
7a, and benzaldehyde in 15%, 6%, and 4% NMR yield, respectively 
(Figure 2a). When heating the reaction mixture for 1 hour, the 
enone 4a and allylic alcohol 7a were not detected. These results 
suggest that enone and allylic alcohol may be the intermediates 

 
Figure 2. Mechanism investigation 

of the reaction. Then we performed transformations of enone and 
allylic alcohol to ketone products under standard conditions. The 
reaction of allylic alcohol (7a) can give ketone (3a) quantitively in 
just 0.5 hours (Figure 2b), suggesting that the isomerization of 
allylic alcohol to the ketone[18] is a facile reaction under the 
standard conditions. When treated enone 4a with benzyl alcohol 
(1a) under standard conditions for 2 hours, we obtained the ketone 
product (3a) in 74% yield, which suggests that 4a can be reduced 

to a ketone with alcohol as a reductant in this reaction (Figure 2c). 
These results proved that enone and allylic alcohol both could be 
the intermediate of ketone in this reaction. 

It has been reported the nickel-catalyzed coupling of alcohols 
and alkynes to furnish allylic alcohols by our group[6a,c], and the 
nickel-catalyzed coupling of aldehydes and alkynes to form 
enones.[7b,9] Based on these works and our observations in this 
reaction, we proposed two possible mechanisms, as shown in 
Figure 2d. In the mechanism 1, the alkyne and in-situ formed 
aldehyde first go cyclometallation with Ni(0) catalyst to afford an 
oxanickelacycle A. Then the protonation of A by alcohol delivers 
acyclic nickel intermediate B, which subsequently goes β-H 
elimination to provide nickel hydride intermediate C, meanwhile 
regenerates an aldehyde. Then reductive elimination of C gives 

Table 3. Nickel-catalyzed coupling of aliphatic alcohols and alkynes a 

Alkyl

OH
+

R

R

Ni(cod)2
 
(10 mol%)

IPr*OMe/HCl (10 mol%)
tBuONa (10 mol%) Alkyl

O

R
Rtoluene (1.0 M)

120 oC, 12 h
5

(1.0 eq.)
2

(0.2 mmol)
6

Me

6a, 86%

Me

Me

O
nPr

nPr

O
nPr

nPr

O
nPr

nPr

6h, 81%6g, 59%b, c

Me

O

O

nPr

nPr

O

nPr

nPr

O

nPr

nPr

6d, 83%

6m, 70%

6l, 76%

10

TBSO
4

4

OCF3

Ph Ph
O

nPr
nPr

O

nPr

nPr

6k, 76%

6e, 89% 6f, 57%

O

O

nPr

nPr4

F

N
Me

Ph

N

O
nPr

nPr

O
nPr

nPr

O

nPr

nPrS

6i, 54%b, d

6n, 65%b, d 6o, 51%b, d

Me

O
nPr

nPr

Me

O

Me

O
nHex

nHex

6j, 46%e

nPent

nPent

6c, 88%6b, 84%

 

a Isolated yield on 0.2 mmol scale reactions; the ratio of ketone: enone is 
all > 20:1 unless otherwise indicated. b Using 15 mol% of catalyst and 
base. c Reaction runs at 40 ℃. d Reaction runs at 80 ℃. e Reaction runs 
at 25 ℃, the ratio of ketone: enone is 12:1. 
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allylic alcohol, which isomerizes to afford the ketone. Alternatively, 
the oxanickelacycle A can undergo β-H elimination to give an 
enone, which is shown in the mechanism 2, and then the conjugate 
reduction by nickel hydride species affords the ketone product. 
Although both mechanisms are possible, we think the mechanism 
1 is the major pathway because the isomerization of allylic alcohol 
7a to the ketone is faster than the conjugate reduction of enone. 

In conclusion, we have developed a novel NHC/nickel-
catalyzed coupling of alcohols and alkynes for the expedient 
synthesis of ketones. A variety of α-branched aryl alkyl ketones and 
dialkyl ketones, which are difficult to access through a metal-
catalyzed hydroacylation of simple internal alkenes with aldehydes, 
were readily prepared in one chemical step. This hydrogenative 
transfer protocol is free from any oxidative or reductive additives, 
rendering this reaction atom-, step- and redox-economical. Further 
expanding the scope of this type of reaction is underway in our 
laboratory. 
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