Tetrahedron Letters 55 (2014) 2022-2026

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of indene derivatives via reactions of vinylidenecyclopropanes with the N-acyliminium cations generated from hydroxylactams

^a Chemistry Department, Saint-Petersburg State University, Universitetsky prosp. 26, St-Petersburg 198504, Russian Federation

ARTICLE INFO

Article history: Received 23 November 2013 Revised 21 January 2014 Accepted 12 February 2014 Available online 20 February 2014

Keywords: Hydroxylactams Vinvlidenecvclopropanes N-Acyliminium cation 1H-Indenes Lewis acid

The 1H-indene subunit appears in compounds displaying a considerable range of biological activity: cyclooxygenase-2 (COX-2) inhibitors,¹ oxytocin antagonists,² estrogen receptor modulators,³ an 5-HT6 serotonin receptor⁴ and in compounds with antiproliferative activity.⁵ Indene derivatives are also used as precursors of metallocene complexes for catalytic polymerization processes and as functional materials.⁶ Consequently, a number of approaches to the synthesis of the indene ring system have been developed, including new methods such as intramolecular cyclization of tetraaryl substituted 1,3-butadienes,⁷ cycloaddition of methylenecyclopropanes with acetals,⁸ cycloisomerizations of alkynes,⁹ annulation of benzylic alcohols with alkynes,¹⁰ rearrangement of *ortho*-(alkynyl)styrenes,¹¹ and cycloisomerization of arylvinylcyclopropenes.¹² Tsuji and co-workers have reported a novel synthetic method for the preparation of indenes by the reaction of aliphatic ketones with aryl-substituted alkynes in the presence of NbCl₃(DME)¹³

The chemistry of vinylidenecyclopropanes has been explored extensively. Novel intramolecular rearrangements and cycloaddition reactions have been studied.^{14,15} However, reactions of vinylidenecyclopropanes with N-acyliminium cations have not been previously studied. N-Acyliminium ions are known as important reactive species in organic synthesis for the construction of carbon–carbon bonds.¹⁶ Numerous examples of *N*-acyliminium ion based intramolecular cyclizations can be found in the synthesis of alkaloid derivatives.¹⁷ Recently, Wang and Zhang reported the first examples of the Lewis acid catalyzed [4+2] cycloaddition reactions of *N*-acyliminium ions with alkenes.¹⁸ In continuation of our earlier work,¹⁹ we have studied the reactions of non-activated vinylidenecyclopropanes (VCPs) with N-acyliminium cations. In the present work we show for the first time that 1-(2-methylpropenvlidene)-2,2-diarylcyclopropanes react with the *N*-acyliminium cations generated from hydroxylactams to give the corresponding 5-[2-methyl-1-(3-Ar¹-1*H*-inden-2-yl)prop-1-enyl]-1-Ar²-1*H*-pyrro 1-2(5H)-ones and 3-[2-methyl-1-(3-Ar¹-1H-inden-2-yl)prop-1enyl]-2-Ar²-isoindolin-1-ones in moderate yields. Of the Lewis acids and solvents screened, the combination of BF3·OEt2 and dichloromethane produced the best results in these reactions.

In our initial studies, the reaction of 1a with VCP 2a was investigated. Under a nitrogen atmosphere, compound 1a was reacted with an equimolar amount of 2a in the presence of $BF_3 \cdot OEt_2$ (1.0 equiv) in CH_2Cl_2 at ambient temperature for one hour, to give 3-{2-methyl-1-[6-methyl-3-(4-methylphenyl)-1H-inden-2-yl]prop-1-en-1-yl}-2-phenylisoindolin-1-one (3a) in 41%

Alexander P. Molchanov^a, Rafael R. Kostikov^a

Alexander V. Stepakov^{a,*}, Anna G. Larina^a, Vitaly M. Boitsov^b, Vladislav V. Gurzhiy^a,

^b Saint-Petersburg Academic University—Nanotechnology Research and Education Centre RAS, Khlopin Str. 8/3, St-Petersburg 194021, Russian Federation

ABSTRACT

A novel route for the synthesis of 1H-indene derivatives via the reactions of vinylidenecyclopropanes (VCPs) with the N-acyliminium cations generated from hydroxylactams is described. © 2014 Elsevier Ltd. All rights reserved.

etrahedro

^{*} Corresponding author. Fax: +7 812 4286939. E-mail address: alstepakov@yandex.ru (A.V. Stepakov).

isolated yield (Table 1, entry 1). Although several other products could be seen in the TLC analysis of the reaction mixture, no other potential products were successfully isolated. When the reaction of **1a** with VCP **2a** was carried out at low temperature $(-20 \circ C)$, the corresponding indene 3a was produced in 36% yield. Under refluxing conditions, product 3a was isolated in only 14% yield. The reactions of hydroxylactams 1 with VCPs 2 were carried out in dichloromethane under similar conditions to those described previously (Table 1). The reactions proceeded smoothly to give the corresponding indene derivatives **3** in moderate yields at room temperature. The presence of either electron-donating or electronwithdrawing substituents on the benzene ring of the VCPs 2 had only a slight effect upon the yields of the produced indenes **3**. For example, decreased yields of the indenes **3** were obtained by using VCPs 2 with electron-donating groups (MeO) on the benzene ring (Table 1, entries 2 and 4). The presence of electron-donating or electron-withdrawing groups on the phenyl ring of the hydroxylactams 1 also had a minor effect upon the yields of the produced indenes 3. 2-[Bis(4-methoxyphenyl)methylene]-5,5dimethyldihydrofuran-3(2H)-one (4) was isolated in 7-9% yields as the side product in all the cases of the reactions with bis(4methoxyphenyl)vinylidenecyclopropane (2d). In cases where R^1 was a phenyl group, or R^2 a methyl group (VCPs **2e**-g), complicated reaction mixtures were formed under the standard conditions (Table 1, entries 10–12). Dihydrofuranone 4 is the oxidation product of VCP 2d; its formation might occur either due to aerial oxygen or during chromatographic separation. The exact reaction mechanism for the formation of **4** is still not clear. Using degassed solvent resulted in only a slight decrease of the amount of 4 in the reaction mixture. The reaction of 2d with BF₃·OEt₂ in CH₂Cl₂ resulted in the formation of dihydrofuranone 4 in 23% yield. Formation of analogous products 4 was not observed from VCPs 2a-c. The compositions and structures of the products **3** and **4** were established by elemental and spectral analyses. The structures of compounds 3c and 4 were confirmed by X-ray diffraction analysis (Figs. 1 and 2).^{20,21} The single crystal of **3c** clearly showed that the arvl group on the indene segment and the arvl ring of the phthal-

Table 1

Reactions of hydroxylactams 1a-c with vinylidenecyclopropanes 2a-d

Figure 1. ORTEP representation of 3c.

Figure 2. ORTEP representation of 4.

^a Isolated yield.

^b 7% of **4** was also formed.

^c 9% of **4** was also formed.

^d A complicated reaction mixture was observed.

Table 2

Reactions of hydroxylactams 5a-d with vinylidenecyclopropanes 2a-d

Entry	Ar	R ¹	R ²	Yield of 6 ^a (%)
1	Ph (5a)	$4-MeC_{6}H_{4}(\mathbf{2b})$	Me	43 (6a)
2	4-MeC ₆ H ₄ (5b)	$4-MeC_{6}H_{4}(\mathbf{2b})$	Me	45 (6b)
3	$4-MeOC_{6}H_{4}$ (5d)	$4-MeC_{6}H_{4}(\mathbf{2b})$	Me	42 (6c)
4	Ph (5a)	Ph (2a)	Н	40 (6d)
5	4-MeC ₆ H ₄ (5b)	Ph (2a)	Н	28 (6e)
6	$4-ClC_{6}H_{4}$ (5c)	Ph (2a)	Н	37 (6f)
7	$4-MeOC_{6}H_{4}$ (5d)	Ph (2a)	Н	31 (6g)
8	4-MeC ₆ H ₄ (5b)	$4-ClC_{6}H_{4}(2c)$	Cl	55 (6h)
9	$4-ClC_{6}H_{4}$ (5c)	$4-ClC_{6}H_{4}(2c)$	Cl	57 (6i)
10	4-MeC ₆ H ₄ (5b)	$4-MeOC_{6}H_{4}(2d)$	MeO	(6j+4) ^b
11	$4-ClC_{6}H_{4}$ (5c)	$4-MeOC_{6}H_{4}(2d)$	MeO	C

^a Isolated yield.

^b A chromatographically inseparable mixture of **6j** and **4** was obtained.

^c Only a trace amount of the indene was observed; dihydrofuranone **4** was isolated in 12% yield.

Figure 3. ORTEP representation of 6b.

imide fragment were face-to-face aligned. As could be seen from the NMR spectra, it was apparent that compounds **3a–i** existed as a mixture of rotamers at ambient temperature on account of slow C3–C1 and C1–C2 bond rotation. In all cases, the presence of rotamers made the NMR spectra complex. At room temperature, the ¹H NMR spectra of products **3a–i** revealed two sets of signals for each CH₃ group of the isopropylidene fragment. Similarly, the ¹H NMR spectra of compounds **3** have two sets of signals belonging to the methylene group of the indene ring. Rotational isomerism was confirmed by temperature-dependent NMR experiments on compounds **3a,f,g**: coalescence was observed at 75–80 °C (see Supplementary information, Figs. 43–45).

For the next step in our study, we treated VCPs **2a–d** with hydroxylactams **5a–d** (Table 2). The reactions proceeded smoothly at room temperature producing the corresponding indene derivatives **6** in trace-to-moderate yields (Table 2). It should be noted that the yield did not improve upon stirring the reaction for a longer period of time or at a higher temperature. The formation of a trace amount of indene **6** was observed in the reaction of **5c** with

Figure 4. ORTEP representation of 6h.

Scheme 1. BF₃·OEt₂-mediated reaction of 7 with 2a at room temperature.

Scheme 2. A possible pathway for the reaction of hydroxylactams 1 and 5 with vinylidenecyclopropanes 2.

VCP **2d**, which contains electron-donating groups (MeO) on the phenyl rings, and only the dihydrofuranone **4** was isolated in this case (Table 2, entry 11). The reaction of hydroxylactam **5b** with VCP **2d** led to an inseparable mixture of **6j** and **4** (Table 2, entry 10). The reaction products were purified by preparative thin-layer chromatography on silica. The structures of **6b** and **6h** were established unequivocally by X-ray diffraction analysis (Figs. 3 and 4).^{22,23} In the reaction of 5-hydroxy-1-phenylpyrrolidin-2-one (**7**) with **2a**, no indene product was observed, but dimer **8** derived from **7** under the reaction conditions was produced as a mixture of isomers (Scheme 1)^{18,24}

Based on the above results, a plausible mechanism for the formation of compounds **3** and **6** is proposed in Scheme 2. Activation of the C–O by $BF_3 \cdot OEt_2$ leads to the formation of *N*-acyliminium cations **9**. Next, regioselective attack of the *N*-acyliminium cations **9** on the central carbon atom of the allene system results in the formation of cyclopropyl cation **10**, which undergoes a cyclopropylallyl rearrangement to give cation **11**. This undergoes cyclization to give substituted indenes **3** and **6**. Clearly, the steric factors are favorable to the addition of the *N*-acyliminium cations to the vinylidenecyclopropanes from the less sterically hindered side.

In conclusion, we have developed novel Lewis acid $(BF_3 \cdot OEt_2)$ mediated reactions of vinylidenecyclopropanes (VCPs) with the *N*-acyliminium cations generated from hydroxylactams, which can be utilized for the synthesis of indene derivatives.

Acknowledgments

We gratefully acknowledge the financial support from the Russian Foundation for Basic Research (Project No. 12-03-01008-a). This research made use of resources from the X-ray Diffraction Centre, the Centre for Magnetic Resonance and the Centre for Chemical Analysis and Materials of Saint-Petersburg State University.

Supplementary data

Supplementary data (experimental procedures, characterization data, and copies of NMR spectra) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.tetlet.2014.02.039. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. Hong, H. C.; Chamberlain, T. S.; Seiber, K.; Koboldt, C. M.; Isakson, P. C.; Reitz, D. B. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 2377.
- Evans, B. E.; Leighton, J. L.; Rittle, K. E.; Gilbert, K. F.; Lundell, G. F.; Gould, N. P.; Hobbs, D. W.; Dipardo, R. M.; Veber, D. F.; Pettibone, D. J.; Clineschmidt, B. V.; Anderson, P. S.; Freidinger, R. M. J. Med. Chem. 1992, 35, 3919.
- (a) Watanabe, N.; Nakagawa, H.; İkeno, A.; Minato, H.; Kohayakawa, C.; Tsuji, J.-I. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 4317; (b) Anstead, G. M.; Peterson, C. S.; Pinney, K. G.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. **1990**, *33*, 2726.
- Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B. L.; Dukat, M.; Glennon, R. A. Bioorg. Med. Chem. Lett. 2005, 15, 1987.
- (a) Serge, K.; Pantelis, G. K.; Daniel, P.; Francoise, B.; Patrick, V. D. V. II Farmaco 1999, 54, 678; (b) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Moroy, T.; Muller, O. *Bioorg. Med. Chem. Lett.* 2002, 12, 709.
- (a) Wang, B. Q. Coord. Chem. Rev. 2006, 250, 242; (b) Alt, H. G.; Koppl, A. Chem. Rev. 2000, 100, 1205; (c) Zargarian, D. Coord. Chem. Rev. 2002, 233–234, 157; (d) Barber, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296; (e) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R. J. Org. Chem. 2000, 65, 6739; (f) Leino, R.; Lehmus, P.; Lehtonen, A. Eur, J. Inorg. Chem. 2004, 3201; (g) Kim, D. H.; Lee, J. A.; Son, S. Uk.; Chung, Y. K.; Choi, C. H. Tetrahedron Lett. 2005, 46, 4627.
- 7. Sun, X.; Izumi, K.-J.; Hu, Ch.-Q.; Lin, G.-Q. Chin. J. Chem. 2006, 24, 430.
- 8. Shao, L.-X.; Xu, B.; Huang, J.-W.; Shi, M. Chem. Eur. J. 2006, 12, 510.
- (a) Liu, Y.; Zhou, S.; Li, G.; Yan, B.; Guo, S.; Zhou, Y.; Zhang, H.; Wang, P. G. Adv. Synth. Catal. 2008, 350, 797; (b) Nun, P.; Gaillard, S.; Poater, A.; Cavallo, L.; Nolan, S. P. Org. Biomol. Chem. 2011, 9, 101.
- 10. Bu, X.; Hong, J.; Zhou, X. Adv. Synth. Catal. 2011, 353, 2111.
- (a) Martinez, A.; Garcia-Garcia, P.; Fernandez-Rodriguez, M. A.; Rodriguez, F.; Sanz, R. Angew. Chem., Int. Ed. 2010, 49, 4633; (b) Sanz, R.; Martinez, A.; Garcia-Garcia, P. Chem. Commun. 2010, 7427.
- 12. Zhu, Z.-B.; Shi, M. Chem. Eur. J. 2008, 14, 10219.
- 13. Obora, Y.; Kimura, M.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2005, 901.
- (a) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chem. Rev. 2010, 110, 5883; (b) Su, C.; Huang, X. Adv. Synth. Catal. 2009, 351, 135; (c) Yao, L.-F.; Shi, M. Chem. Eur. J. 2009, 15, 3875; (d) Wu, L.; Shi, M. Eur. J. Org. Chem. 2011, 1099; (e) Lu, J.-M.; Shi, M. Chem. Eur. J. 2009, 15, 6065; (f) Yao, L.-F.; Shi, M. Eur. J. Org. Chem. 2009, 74, 8272; (h) Li, W.; Shi, M. J. Org. Chem. 2009, 74, 82672; (h) Li, W.; Shi, M. J. Org. Chem. 2009, 74, 8265; (i) Li, W.; Shi, M. Tetrahedron 2009, 65, 9328; (k) Lu, B.-L.; Lu, J.-M.; Shi, M. Tetrahedron 2009, 65, 9328; (k) Lu, B.-L.; Lu, J.-M.; Shi, M. J. Org. Chem. 2008, 73, 2266; (m) Li, W.; Shi, M. J. Org. Chem. 2008, 73, 4151; (n) Li, W.; Shi, M. J. Org. Chem. 2008, 73, 6698; (o) Shi, M.; Wu, L.; Lu, J.-M.; Shi, M. Jrg. Chem. 2008, 73, 8344; (p) Lu, J.-M.; Shi, M. Org. Lett. 2008, 10, 1943; (q) Campbell, M. J.; Pohlhaus, P. D.; Min, G.; Ohmatsu, K.; Johnson, J. S. J. Am. Chem. 2003, 68, 7700.
- (a) Li, Q.; Shi, M.; Timmons, C.; Li, G. Org. Lett. 2006, 8, 625; (b) Shao, L-X.; Zhang, Y.-P.; Qi, M.-X.; Shi, M. Org. Lett. 2007, 9, 117; (c) Lu, J.-M.; Shi, M. Org. Lett. 2007, 9, 1805; (d) Xu, G.-C.; Ma, M.; Liu, L.-P.; Shi, M. Synlett 2005, 1869; (e) Shi, M.; Lu, J.-M. Synlett 2005, 2352; (f) Lu, J.-M.; Shi, M. Tetrahedron 2007, 63, 7545; (g) Shi, M.; Wu, L; Lu, J.-M. Tetrahedron 2008, 64, 3315; (h) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H.; Otsuji, Y.; Yasuda, M.; Hashiguchi, M.; Shima, K. Tetrahedron Lett. 2001, 42, 3363; (i) Stepakov, A. V.; Larina, A. G.;

Molchanov, A. P.; Stepakova, L. V.; Starova, G. L.; Kostikov, R. R. Russ. J. Org. Chem. **2007**, 43, 41; (j) Stepakov, A. V.; Larina, A. G.; Radina, O. V.; Boitsov, V. M.; Molchanov, A. P. Chem. Heterocycl. Compd. **2008**, 44, 430; (k) Stepakov, A. V.; Larina, A. G.; Radina, O. V.; Molchanov, A. P.; Kostikov, R. R. Vestnik SPbGU **2009**, 1, 110; (l) Larina, A. G.; Stepakov, A. V.; Boitsov, V. M.; Molchanov, A. P.; Gurzhiy, V. V.; Starova, G. L.; Lykholay, A. N. Tetrahedron Lett. **2011**, 52, 5777.

- (a) Othman, R. B.; Affani, R.; Tranchant, M.-J.; Antoniotti, S.; Dalla, V. Angew. Chem., Int. Ed. 2010, 49, 776; (b) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431; (c) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817.
- (a) Bahajaj, A. A.; Vernon, J. M.; Wilson, G. D. J. Chem. Soc., Perkin Trans. 1 2001, 1446; (b) Katritzky, A. R.; Mehta, S.; He, H.-Y. J. Org. Chem. 2001, 66, 148; (c) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404; (d) King, F. D.; Aliev, A. E.; Caddick, S.; Tocher, D. A. Org. Biomol. Chem. 2011, 9, 1547; (e) Hilt, G.; Galbiati, F.; Harms, K. Synthesis 2006, 21, 3575; (f) Allin, S. M.; James, S. L.; Martin, W. P.; Smith, T. A. D. Tetrahedron Lett. 2001, 42, 3943; (g) Allous, I.; Comesse, S.; Berkeš, D.; Alkyat, A.; Daïch, A. Tetrahedron Lett. 2009, 50, 4411; (h) Stepakov, A. V.; Ledovskaya, M. S.; Boitsov, V. M.; Molchanov, A. P.; Kostikov, R. R.; Gurzhiy, V. V.; Starova, G. L. Tetrahedron Lett. 2012, 53, 5414.
- (a) Qiao, L.; Zhou, Y.; Zhang, W. Chin. J. Chem. 2010, 28, 449; (b) Zhang, W.; Zhen, A.; Liu, Z.; Yang, L.; Liu, Z. L. Tetrahedron Lett. 2005, 46, 5691; (c) Zhang, W.; Huang, L.; Wang, J. Synthesis 2006, 2053.

- Stepakov, A. V.; Larina, A. G.; Boitsov, V. M.; Molchanov, A. P.; Gurzhiy, V. V.; Starova, G. L. Tetrahedron Lett. 2012, 53, 3411.
- 20. Crystallographic data for the structure **3c** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 936478. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
- 21. Crystallographic data for the structure **4** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 970376. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
- 22. Crystallographic data for the structure **6b** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 936477. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
- 23. Crystallographic data for the structure **6h** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 963391. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: deposit@ccdc.cam.ac.uk).
- Spectroscopic and analytical characterizations for 8 have been previously reported in Ref. ^{18a}.